Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition

M. Morita, R. Sabourin, F. Bortolozzi, C. Y. Suen
{"title":"Unsupervised feature selection using multi-objective genetic algorithms for handwritten word recognition","authors":"M. Morita, R. Sabourin, F. Bortolozzi, C. Y. Suen","doi":"10.1109/ICDAR.2003.1227746","DOIUrl":null,"url":null,"abstract":"In this paper a methodology for feature selection in unsupervisedlearning is proposed. It makes use of a multi-objectivegenetic algorithm where the minimization of thenumber of features and a validity index that measures thequality of clusters have been used to guide the search towardsthe more discriminant features and the best numberof clusters. The proposed strategy is evaluated usingtwo synthetic data sets and then it is applied to handwrittenmonth word recognition. Comprehensive experimentsdemonstrate the feasibility and efficiency of the proposedmethodology.","PeriodicalId":249193,"journal":{"name":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh International Conference on Document Analysis and Recognition, 2003. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2003.1227746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper a methodology for feature selection in unsupervisedlearning is proposed. It makes use of a multi-objectivegenetic algorithm where the minimization of thenumber of features and a validity index that measures thequality of clusters have been used to guide the search towardsthe more discriminant features and the best numberof clusters. The proposed strategy is evaluated usingtwo synthetic data sets and then it is applied to handwrittenmonth word recognition. Comprehensive experimentsdemonstrate the feasibility and efficiency of the proposedmethodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多目标遗传算法的无监督特征选择手写体单词识别
本文提出了一种无监督学习中特征选择的方法。它利用多目标遗传算法,其中特征数量的最小化和衡量聚类质量的有效性指标被用来指导搜索更有区别的特征和最佳数量的聚类。使用两个合成数据集对所提出的策略进行了评估,然后将其应用于手写月词识别。综合实验证明了该方法的可行性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of imperfect OCR on part-of-speech tagging Writer identification using innovative binarised features of handwritten numerals Word searching in CCITT group 4 compressed document images Exploiting reliability for dynamic selection of classi .ers by means of genetic algorithms Investigation of off-line Japanese signature verification using a pattern matching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1