Classification of multispectral remote-sensing images by neural networks

F. Roli, S. Serpico, L. Bruzzone, G. Vernazza
{"title":"Classification of multispectral remote-sensing images by neural networks","authors":"F. Roli, S. Serpico, L. Bruzzone, G. Vernazza","doi":"10.5281/ZENODO.36388","DOIUrl":null,"url":null,"abstract":"This paper addresses the classification of multispectral remote-sensing images by the neural-network approach. In particular, an experimental comparison on the performances provided by different neural models for classifying multisensor remote-sensing data is reported. Four neural classifiers are considered in the comparison: the Multilayer Perceptron, Probabilistic Neural Networks, Radial Basis Function networks and a kind of Structured Neural Networks.","PeriodicalId":282153,"journal":{"name":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1996-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1996 8th European Signal Processing Conference (EUSIPCO 1996)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.36388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper addresses the classification of multispectral remote-sensing images by the neural-network approach. In particular, an experimental comparison on the performances provided by different neural models for classifying multisensor remote-sensing data is reported. Four neural classifiers are considered in the comparison: the Multilayer Perceptron, Probabilistic Neural Networks, Radial Basis Function networks and a kind of Structured Neural Networks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于神经网络的多光谱遥感图像分类
本文研究了用神经网络方法对多光谱遥感图像进行分类。本文特别对不同神经网络模型在多传感器遥感数据分类中的性能进行了实验比较。在比较中考虑了四种神经分类器:多层感知器、概率神经网络、径向基函数网络和一种结构化神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PDF Not Yet Available In IEEE Xplore Parameter estimation of exponentially damped sinusoids using second order statistics A multivariable Steiglitz-McBride method On the approximation of nonbandlimited signals by nonuniform sampling series Model reduction by Kautz filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1