High efficiency OLEDs based on exciplex (Conference Presentation)

Ken‐Tsung Wong
{"title":"High efficiency OLEDs based on exciplex (Conference Presentation)","authors":"Ken‐Tsung Wong","doi":"10.1117/12.2323782","DOIUrl":null,"url":null,"abstract":"Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.","PeriodicalId":158502,"journal":{"name":"Organic Light Emitting Materials and Devices XXII","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Light Emitting Materials and Devices XXII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2323782","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. The small ΔEST in TADF-based systems prompts highly efficient RISC from T1 to S1 states, and consequently both singlet and triplet excitons can be harvested for light emission. For the last five years, a tremendous amount of TADF molecules have been reported based on the manipulation of the intramolecular charge transfer as well as the HOMO-LUMO overlap. Beyond this strategy, there is an emerging approach that simply involves intermolecular charge transfer between physically blended electron donor and acceptor molecules for high efficiency TADF-based OLEDs (via exciplex formation). This is because the exciplex-based systems can realize relatively small ΔEST (0–0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the possibility to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency and solve the challenging issue of achieving small ΔEST in organic systems. However, research on exciplex-forming materials is still at a growing stage, and consequently, new molecules with remarkable electro and or photo-physical property are still being explored. Thus, by focusing on the development of exciplex systems, we shall have the prospective of achieving the demands for high-efficiency and high stability OLED devices. In this conference, we will report our updated results of new efficient exciplex systems, and exciplex-hosted fluorescent and phosphorescent OLEDs with high efficiency and high stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于exciplex的高效oled(会议报告)
显示热激活延迟荧光(TADF)的有机材料是近年来发展迅速的一类引人注目的功能材料。基于tadf的系统中的小ΔEST促使从T1到S1状态的高效RISC,因此可以收集单线态和三重态激子用于发光。在过去的五年中,大量的基于分子内电荷转移和HOMO-LUMO重叠的TADF分子被报道。除了这种策略之外,还有一种新兴的方法,即在物理混合的电子供体和受体分子之间进行分子间电荷转移,以实现高效的基于tadf的oled(通过外络合物形成)。这是因为电子和空穴位于两个不同的分子上,因此交换能很小,因此基于异构体的系统可以更容易地实现相对较小的ΔEST (0-0.05 eV)。因此,基于激子的oled有可能最大化TADF贡献并实现理论上100%的内部量子效率,并解决在有机系统中实现小ΔEST的挑战性问题。然而,对异构体形成材料的研究仍处于发展阶段,因此,具有显着的电或光物理性质的新分子仍在探索中。因此,通过专注于异构系统的发展,我们将有希望实现对高效率和高稳定性OLED器件的需求。在本次会议上,我们将报告我们的最新研究成果,新的高效的激光复合物系统,以及具有高效率和高稳定性的激光复合物承载的荧光和磷光oled。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HyperfluorescenceTM: Recent achievements of Kyulux materials Linear carbene metal amides as a new class of emitters for highly efficient solution-processed and vapor-deposited OLEDs (Conference Presentation) Optoelectronic hybrid perovskite materials and devices (Conference Presentation) High-efficiency and ultrapure-green light emitting diodes using colloidal 2D perovskites (Conference Presentation) Surface analytical investigation on stability of perovskite solar cell material (Conference Presentation)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1