Condition numbers for the cube. I: Univariate polynomials and hypersurfaces

Josué Tonelli-Cueto, Elias P. Tsigaridas
{"title":"Condition numbers for the cube. I: Univariate polynomials and hypersurfaces","authors":"Josué Tonelli-Cueto, Elias P. Tsigaridas","doi":"10.1145/3373207.3404054","DOIUrl":null,"url":null,"abstract":"The condition-based complexity analysis framework is one of the gems of modern numerical algebraic geometry and theoretical computer science. One of the challenges that it poses is to expand the currently limited range of random polynomials that we can handle. Despite important recent progress, the available tools cannot handle random sparse polynomials and Gaussian polynomials, that is polynomials whose coefficients are i.i.d. Gaussian random variables. We initiate a condition-based complexity framework based on the norm of the cube, that is a step in this direction. We present this framework for real hypersurfaces. We demonstrate its capabilities by providing a new probabilistic complexity analysis for the Plantinga-Vegter algorithm, which covers both random sparse (alas a restricted sparseness structure) polynomials and random Gaussian polynomials. We present explicit results with structured random polynomials for problems with two or more dimensions. Additionally, we provide some estimates of the separation bound of a univariate polynomial in our current framework.","PeriodicalId":186699,"journal":{"name":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 45th International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3373207.3404054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The condition-based complexity analysis framework is one of the gems of modern numerical algebraic geometry and theoretical computer science. One of the challenges that it poses is to expand the currently limited range of random polynomials that we can handle. Despite important recent progress, the available tools cannot handle random sparse polynomials and Gaussian polynomials, that is polynomials whose coefficients are i.i.d. Gaussian random variables. We initiate a condition-based complexity framework based on the norm of the cube, that is a step in this direction. We present this framework for real hypersurfaces. We demonstrate its capabilities by providing a new probabilistic complexity analysis for the Plantinga-Vegter algorithm, which covers both random sparse (alas a restricted sparseness structure) polynomials and random Gaussian polynomials. We present explicit results with structured random polynomials for problems with two or more dimensions. Additionally, we provide some estimates of the separation bound of a univariate polynomial in our current framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
立方体的条件数。1:单变量多项式与超曲面
基于条件的复杂性分析框架是现代数值代数几何和理论计算机科学的瑰宝之一。它带来的挑战之一是扩大目前有限的随机多项式的范围,我们可以处理。尽管最近取得了重要进展,但现有的工具无法处理随机稀疏多项式和高斯多项式,即系数为高斯随机变量的多项式。我们在立方体规范的基础上启动了一个基于条件的复杂性框架,这是朝着这个方向迈出的一步。我们为真实的超曲面提出了这个框架。我们通过提供Plantinga-Vegter算法的一种新的概率复杂度分析来证明它的能力,该算法涵盖了随机稀疏多项式(可惜是一种受限的稀疏结构)和随机高斯多项式。我们用结构随机多项式给出了二维或多维问题的显式结果。此外,我们还提供了当前框架中单变量多项式分离界的一些估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Conditional lower bounds on the spectrahedral representation of explicit hyperbolicity cones Sparse multiplication for skew polynomials Computation of free non-commutative gröbner bases over Z with Singular:Letterplace Ideal Interpolation, H-bases and symmetry Letterplace
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1