Heat Transfer and Fluid Flow Characteristic of One Side Heated Vertical Rectangular Channel That Inserted Thin Metallic Wire

Gota Suga, T. Takeda
{"title":"Heat Transfer and Fluid Flow Characteristic of One Side Heated Vertical Rectangular Channel That Inserted Thin Metallic Wire","authors":"Gota Suga, T. Takeda","doi":"10.1115/icone2020-16705","DOIUrl":null,"url":null,"abstract":"\n A Very High Temperature Reactor (VHTR) is one of the next generation nuclear systems. From a view point of safety characteristics, a passive cooling system should be designed as the best way of a reactor vessel cooling system (VCS) in the VHTR. Therefore, the gas cooling system with natural circulation is considered as a candidate for the VCS of the VHTR. Japan Atomic Energy Agency (JAEA) is advancing the technology development of the VHTR and is now pursuing design and development of commercial systems such as the 300MWe gas turbine high temperature reactor GTHTR300C (Gas Turbine High Temperature Reactor 300 for Cogeneration). In the VCS of the GTHTR300C, many rectangular flow channels are formed around the reactor pressure vessel (RPV), and a cooling panel utilizing natural convection of air has been proposed. In order to apply the proposed panel to the VCS of the GTHTR300C, it is necessary to clarify the heat transfer and flow characteristics of the proposed channel in the cooling panel. Thus, we carried out an experiment to investigate heat transfer and fluid flow characteristics by natural convection in a vertical rectangular channel heated on one side. Experiments were also carried out to investigate the heat transfer and fluid flow characteristics by natural convection when a porous material with high porosity is inserted into the channel. An experimental apparatus is a vertical rectangular flow channel with a square cross section in which one surface is heated by a rubber heater. Dimensions of the experimental apparatus is 600 mm in height and 50 mm on one side of the square cross section. Air was used as a working fluid and fine copper wire (diameter: 0.5 mm) was used as a porous material. The temperature of the wall surface and gas in the channel were measured by K type thermocouples. We measured the outlet flow rate by hot-wire anemometer which is an omnidirectional spherical probe of diameter 2.5mm. The experiment has been carried out under the condition that a copper wire with a scourer model and a cubic lattice model were inserting into the channel.","PeriodicalId":414088,"journal":{"name":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Student Paper Competition; Thermal-Hydraulics; Verification and Validation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/icone2020-16705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Very High Temperature Reactor (VHTR) is one of the next generation nuclear systems. From a view point of safety characteristics, a passive cooling system should be designed as the best way of a reactor vessel cooling system (VCS) in the VHTR. Therefore, the gas cooling system with natural circulation is considered as a candidate for the VCS of the VHTR. Japan Atomic Energy Agency (JAEA) is advancing the technology development of the VHTR and is now pursuing design and development of commercial systems such as the 300MWe gas turbine high temperature reactor GTHTR300C (Gas Turbine High Temperature Reactor 300 for Cogeneration). In the VCS of the GTHTR300C, many rectangular flow channels are formed around the reactor pressure vessel (RPV), and a cooling panel utilizing natural convection of air has been proposed. In order to apply the proposed panel to the VCS of the GTHTR300C, it is necessary to clarify the heat transfer and flow characteristics of the proposed channel in the cooling panel. Thus, we carried out an experiment to investigate heat transfer and fluid flow characteristics by natural convection in a vertical rectangular channel heated on one side. Experiments were also carried out to investigate the heat transfer and fluid flow characteristics by natural convection when a porous material with high porosity is inserted into the channel. An experimental apparatus is a vertical rectangular flow channel with a square cross section in which one surface is heated by a rubber heater. Dimensions of the experimental apparatus is 600 mm in height and 50 mm on one side of the square cross section. Air was used as a working fluid and fine copper wire (diameter: 0.5 mm) was used as a porous material. The temperature of the wall surface and gas in the channel were measured by K type thermocouples. We measured the outlet flow rate by hot-wire anemometer which is an omnidirectional spherical probe of diameter 2.5mm. The experiment has been carried out under the condition that a copper wire with a scourer model and a cubic lattice model were inserting into the channel.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
插入细金属丝的单向加热垂直矩形通道的传热与流体流动特性
超高温反应堆(VHTR)是下一代核系统之一。从安全特性的角度出发,应设计被动冷却系统作为超低温堆容器冷却系统的最佳方式。因此,自然循环的气体冷却系统被认为是VHTR VCS的候选系统。日本原子能机构(JAEA)正在推进VHTR的技术开发,目前正在寻求设计和开发商业系统,如300MWe燃气轮机高温反应堆GTHTR300C(燃气轮机高温反应堆300用于热电联产)。在GTHTR300C的VCS中,在反应堆压力容器(RPV)周围形成了许多矩形流道,并提出了利用空气自然对流的冷却板。为了将所提出的面板应用于GTHTR300C的VCS,有必要澄清所提出的冷却面板中通道的传热和流动特性。因此,我们进行了一项实验,研究了自然对流在一侧加热的垂直矩形通道中的传热和流体流动特性。实验还研究了高孔隙率多孔材料插入通道时的自然对流换热特性和流体流动特性。一种实验装置是具有方形横截面的垂直矩形流道,其中一个表面被橡胶加热器加热。实验装置的尺寸为高600mm,方形截面一侧为50mm。空气作为工作流体,细铜线(直径0.5 mm)作为多孔材料。用K型热电偶测量了壁面温度和通道内气体温度。我们用热线风速计测量出口流速,该风速计是一个直径为2.5mm的全向球形探头。实验是在冲刷模型和立方晶格模型的铜线分别插入通道的情况下进行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparative Study of Constrained and Unconstrained Melting Inside a Sphere Study on Seismic Isolation and Hi-Frequency Vibration Isolation Technology for Equipment in Nuclear Power Plant Using Aero Floating Technique Experimental Study of the Processes of Gas-Steam Pressurizer Insurge Transients Study on Scattering Correction of the 60Co Gantry-Movable Dual-Projection Digital Radiography Inspection System An Experimental Study of Two-Phase Flow in a Tight Lattice Using Wire-Mesh Sensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1