{"title":"Supervised Learning Methods for Skin Segmentation Based on Pixel Color Classification","authors":"A. Taan, Zakarya Farou","doi":"10.36427/CEJNTREP.3.1.779","DOIUrl":null,"url":null,"abstract":"Over the last few years, skin segmentation has been widely applied in diverse aspects of computer vision and biometric applications including face detection, face tracking, and face/hand-gesture recognition systems. Due to its importance, we observed a reawakened interest in developing skin segmentation approaches. In this paper, we offer a comparison between five major supervised learning algorithms for skin segmentation. The algorithms involved in this comparison are: Support Vector Machines (SVM), K-Nearest-Neighbors (KNN), Naive Bayes (NB), Decision Tree (DT), and Logistic Regression (LR). Various scenarios of data pre-processing are proposed including a conversion from RGB into YCbCr color space. Using YCbCr representation gave a better performance in skin/non-skin classification. Despite the settled comparison criteria, KNN was found to be the most desirable model that provides a stable performance overall the several experiments conducted.","PeriodicalId":355843,"journal":{"name":"Central-European Journal of New Technologies in Research, Education and Practice","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central-European Journal of New Technologies in Research, Education and Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36427/CEJNTREP.3.1.779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Over the last few years, skin segmentation has been widely applied in diverse aspects of computer vision and biometric applications including face detection, face tracking, and face/hand-gesture recognition systems. Due to its importance, we observed a reawakened interest in developing skin segmentation approaches. In this paper, we offer a comparison between five major supervised learning algorithms for skin segmentation. The algorithms involved in this comparison are: Support Vector Machines (SVM), K-Nearest-Neighbors (KNN), Naive Bayes (NB), Decision Tree (DT), and Logistic Regression (LR). Various scenarios of data pre-processing are proposed including a conversion from RGB into YCbCr color space. Using YCbCr representation gave a better performance in skin/non-skin classification. Despite the settled comparison criteria, KNN was found to be the most desirable model that provides a stable performance overall the several experiments conducted.