{"title":"Calculation of Thermochemical Properties of Carbon-cluster Ablation Species","authors":"M. Priyadarshini, R. Jaffe, A. Munafò, M. Panesi","doi":"10.2514/6.2018-4179","DOIUrl":null,"url":null,"abstract":"Carbon clusters and hydrocarbons are constituents of the pyrolysis gases injected into the boundary layer of a space vehicle with a carbonaceous heat shield. These molecules have absorption spectra in the VUV and UV region that match the emission spectra of atomic nitrogen and oxygen. Hence, they can potentially absorb the radiation impinging on the heat shield of the space vehicle. This paper studies the ground state thermochemical properties and low-lying excited electronic states of potential radiation absorbing molecules present in the boundary layer using ab initio quantum chemistry meth-ods. These results provide a more accurate prediction of the radiative heat flux on the surface which can lead to improvement in the design of the thermal protection system","PeriodicalId":423948,"journal":{"name":"2018 Joint Thermophysics and Heat Transfer Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Joint Thermophysics and Heat Transfer Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2018-4179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Carbon clusters and hydrocarbons are constituents of the pyrolysis gases injected into the boundary layer of a space vehicle with a carbonaceous heat shield. These molecules have absorption spectra in the VUV and UV region that match the emission spectra of atomic nitrogen and oxygen. Hence, they can potentially absorb the radiation impinging on the heat shield of the space vehicle. This paper studies the ground state thermochemical properties and low-lying excited electronic states of potential radiation absorbing molecules present in the boundary layer using ab initio quantum chemistry meth-ods. These results provide a more accurate prediction of the radiative heat flux on the surface which can lead to improvement in the design of the thermal protection system