{"title":"Reducing calling convention overhead in object-oriented programming on embedded ARM thumb-2 platforms","authors":"Joseph Caldwell, S. Chiba","doi":"10.1145/3136040.3136057","DOIUrl":null,"url":null,"abstract":"This paper examines the causes and extent of code size overhead caused by the ARM calling convention in Thumb-2 binaries. We show that binaries generated from C++ source files generally have higher amounts of calling convention overhead, and present a binary file optimizer to eliminate some of that overhead. Calling convention overhead can negatively impact power consumption, flash memory costs, and chip size in embedded or otherwise resource-constrained domains. This is particularly true on platforms using \"compressed\" instruction sets, such as the 16-bit ARM Thumb and Thumb-2 instruction sets, used in virtually all smartphones and in many other smaller-scale embedded devices. In this paper, we examine the extent of calling convention overhead in practical software, and compare the results of C and C++ programs, and find that C++ programs generally have a higher percentage of calling-convention overhead. Finally, we demonstrate a tool capable of eliminating some of this overhead, particularly in the case of C++ programs, by modifying the calling conventions on a per-procedure basis.","PeriodicalId":398999,"journal":{"name":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3136040.3136057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
This paper examines the causes and extent of code size overhead caused by the ARM calling convention in Thumb-2 binaries. We show that binaries generated from C++ source files generally have higher amounts of calling convention overhead, and present a binary file optimizer to eliminate some of that overhead. Calling convention overhead can negatively impact power consumption, flash memory costs, and chip size in embedded or otherwise resource-constrained domains. This is particularly true on platforms using "compressed" instruction sets, such as the 16-bit ARM Thumb and Thumb-2 instruction sets, used in virtually all smartphones and in many other smaller-scale embedded devices. In this paper, we examine the extent of calling convention overhead in practical software, and compare the results of C and C++ programs, and find that C++ programs generally have a higher percentage of calling-convention overhead. Finally, we demonstrate a tool capable of eliminating some of this overhead, particularly in the case of C++ programs, by modifying the calling conventions on a per-procedure basis.