On the Optimal Error Rate of Stochastic Block Model with Symmetric Side Information

Feng Zhao, Jin Sima, Shao-Lun Huang
{"title":"On the Optimal Error Rate of Stochastic Block Model with Symmetric Side Information","authors":"Feng Zhao, Jin Sima, Shao-Lun Huang","doi":"10.1109/ITW48936.2021.9611481","DOIUrl":null,"url":null,"abstract":"Side information improves the accuracy in community detection problems. While experimental results demonstrate the superior performance of many detection methods based on both the node attributes and graph structure, the question of the fundamental limit of the error rate for exact recovery remains open. In this paper, we obtain the asymptotic optimal error rate in the sense of exact recovery for a special two-community symmetric stochastic block model (SSBM) with side information consisting of multiple features. Our result provides insight on the number of features and nodes in the graph needed for community detection.","PeriodicalId":325229,"journal":{"name":"2021 IEEE Information Theory Workshop (ITW)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW48936.2021.9611481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Side information improves the accuracy in community detection problems. While experimental results demonstrate the superior performance of many detection methods based on both the node attributes and graph structure, the question of the fundamental limit of the error rate for exact recovery remains open. In this paper, we obtain the asymptotic optimal error rate in the sense of exact recovery for a special two-community symmetric stochastic block model (SSBM) with side information consisting of multiple features. Our result provides insight on the number of features and nodes in the graph needed for community detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
边信息对称的随机块模型的最优错误率
侧信息提高了社区检测问题的准确性。虽然实验结果显示了许多基于节点属性和图结构的检测方法的优越性能,但精确恢复错误率的基本限制问题仍然存在。本文研究了一类边信息包含多个特征的特殊双群体对称随机块模型在精确恢复意义上的渐近最优错误率。我们的结果提供了社区检测所需的图中特征和节点的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Amplitude Constrained Poisson Noise Channel: Properties of the Capacity-Achieving Input Distribution Identification under Effective Secrecy Exact Recovery in the Balanced Stochastic Block Model with Side Information Coding Theorems on Digital Fingerprinting Coding under Informed and Uninformed Setups Two-dimensional Lee-Error-Correcting Codes on Hexagonal Signal Constellations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1