Creating generic text summaries

Yihong Gong, Xin Liu
{"title":"Creating generic text summaries","authors":"Yihong Gong, Xin Liu","doi":"10.1109/ICDAR.2001.953917","DOIUrl":null,"url":null,"abstract":"We propose two generic text summarization methods that create text summaries by ranking and extracting sentences from the original documents. The first method uses standard information retrieval methods to rank sentence relevances, while the second method uses the latent semantic analysis technique to identify semantically important sentences, for summary creations. Both methods strive to select sentences that are highly ranked and different from each other. This is an attempt to create a summary with a wider coverage of the document's main content and less redundancy. Performance evaluations on the two summarization methods are conducted by comparing their summarization outputs with the manual summaries generated by three independent human evaluators.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953917","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

We propose two generic text summarization methods that create text summaries by ranking and extracting sentences from the original documents. The first method uses standard information retrieval methods to rank sentence relevances, while the second method uses the latent semantic analysis technique to identify semantically important sentences, for summary creations. Both methods strive to select sentences that are highly ranked and different from each other. This is an attempt to create a summary with a wider coverage of the document's main content and less redundancy. Performance evaluations on the two summarization methods are conducted by comparing their summarization outputs with the manual summaries generated by three independent human evaluators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
创建通用文本摘要
我们提出了两种通用的文本摘要方法,通过从原始文档中排序和提取句子来创建文本摘要。第一种方法使用标准的信息检索方法对句子相关度进行排序,第二种方法使用潜在语义分析技术识别语义重要的句子,以便创建摘要。这两种方法都努力选择排名较高且彼此不同的句子。这是为了创建一个更广泛地涵盖文档主要内容和减少冗余的摘要。通过将两种总结方法的总结输出与三位独立的人工评估者生成的手动总结进行比较,对两种总结方法进行绩效评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1