BiRFIA: Selective Binary Rewriting for Function Interception on ARM

Kelun Lei, Xin You, Hailong Yang, Zhongzhi Luan, D. Qian
{"title":"BiRFIA: Selective Binary Rewriting for Function Interception on ARM","authors":"Kelun Lei, Xin You, Hailong Yang, Zhongzhi Luan, D. Qian","doi":"10.1145/3577193.3593701","DOIUrl":null,"url":null,"abstract":"Function interception of fully-optimized binaries is widely used for optimization with its ability to accurately collect runtime information and detect inefficiencies at the function level. However, the implementation of function interception with existing binary rewriting techniques still suffers from limited reliability and performance on ARM platform. In this paper, we propose BiRFIA, an efficient selective binary rewriting framework for function interception targeting highly optimized binaries on ARM platforms. BiRFIA performs static binary rewriting of specific functions and intercepts them through well-formed trampoline sections and external instrumentation libraries. Besides, BiRFIA places complex instrumentation code in the trampoline section and jumps to the trampoline section via an adaptive instruction eviction strategy, which significantly reduces the probability of unexpected errors. For evaluation, we develop two function interception tools based on BiRFIA, including a function performance event counter collector and a function parameter tracer. Guided by these tools, we optimize several benchmarks and real-world programs, yielding up to 8% performance speedup. Our evaluation result demonstrates that BiRFIA incurs negligible runtime overhead of 1.006× on average.","PeriodicalId":424155,"journal":{"name":"Proceedings of the 37th International Conference on Supercomputing","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th International Conference on Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3577193.3593701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Function interception of fully-optimized binaries is widely used for optimization with its ability to accurately collect runtime information and detect inefficiencies at the function level. However, the implementation of function interception with existing binary rewriting techniques still suffers from limited reliability and performance on ARM platform. In this paper, we propose BiRFIA, an efficient selective binary rewriting framework for function interception targeting highly optimized binaries on ARM platforms. BiRFIA performs static binary rewriting of specific functions and intercepts them through well-formed trampoline sections and external instrumentation libraries. Besides, BiRFIA places complex instrumentation code in the trampoline section and jumps to the trampoline section via an adaptive instruction eviction strategy, which significantly reduces the probability of unexpected errors. For evaluation, we develop two function interception tools based on BiRFIA, including a function performance event counter collector and a function parameter tracer. Guided by these tools, we optimize several benchmarks and real-world programs, yielding up to 8% performance speedup. Our evaluation result demonstrates that BiRFIA incurs negligible runtime overhead of 1.006× on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ARM的函数拦截的选择性二进制重写
完全优化的二进制文件的函数拦截被广泛用于优化,因为它能够准确地收集运行时信息并检测函数级别的低效率。然而,现有的二进制重写技术在ARM平台上实现函数拦截的可靠性和性能仍然有限。在本文中,我们提出了BiRFIA,一个高效的选择性二进制重写框架,用于针对ARM平台上高度优化的二进制文件的函数拦截。BiRFIA执行特定函数的静态二进制重写,并通过格式良好的蹦床部分和外部仪器库拦截它们。此外,BiRFIA将复杂的仪表代码放在蹦床段,并通过自适应指令退出策略跳转到蹦床段,这大大降低了意外错误的概率。为了进行评估,我们开发了两个基于BiRFIA的函数拦截工具,包括函数性能事件计数器收集器和函数参数跟踪器。在这些工具的指导下,我们优化了几个基准测试和实际程序,产生了高达8%的性能加速。我们的评估结果表明,BiRFIA产生的运行时开销平均为1.006倍,可以忽略不计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FLORIA: A Fast and Featherlight Approach for Predicting Cache Performance FT-topo: Architecture-Driven Folded-Triangle Partitioning for Communication-efficient Graph Processing Using Additive Modifications in LU Factorization Instead of Pivoting GRAP: Group-level Resource Allocation Policy for Reconfigurable Dragonfly Network in HPC Enabling Reconfigurable HPC through MPI-based Inter-FPGA Communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1