ACE: An ATAK Plugin for Enhanced Acoustic Situational Awareness at the Edge

David Nieves-Acaron, Benjamin Luchterhand, A. Aravamudan, David Elliott, Steven Wyatt, Carlos E. Otero, L. D. Otero, Anthony O. Smith, A. Peter, Wesley Jones, Eric Lam
{"title":"ACE: An ATAK Plugin for Enhanced Acoustic Situational Awareness at the Edge","authors":"David Nieves-Acaron, Benjamin Luchterhand, A. Aravamudan, David Elliott, Steven Wyatt, Carlos E. Otero, L. D. Otero, Anthony O. Smith, A. Peter, Wesley Jones, Eric Lam","doi":"10.1109/MILCOM52596.2021.9653127","DOIUrl":null,"url":null,"abstract":"Superior battlefield Situational Awareness (SA) requires timely and coherent integration of various sensor modalities to provide the most complete, real-time picture of in-theater activities. In this work, we introduce Acoustic Classification at the Edge (ACE), an ATAK plugin for improved acoustic SA, to move beyond traditional full-motion video and geospatial data typically employed for SA, and instead focus on acoustic intelligence. Our Android Tactical Awareness Kit (ATAK) plugin is able to perform on-device audio recording, classification, labeling, and autonomous reach-back to the cloud, when available, to enable warfighters to improve SA over time. As part of ACE, we detail a machine learning analytic designed to classify acoustic sources directly at the edge, with a case study on firearm classification. We also detail the cloud infrastructure necessary to support it. This paper describes the application and cloud architecture, in-theater operations, and experimental results after having deployed the plugin on ATAK. Finally, we propose future directions for acoustic classification at the edge based on our findings.","PeriodicalId":187645,"journal":{"name":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MILCOM 2021 - 2021 IEEE Military Communications Conference (MILCOM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MILCOM52596.2021.9653127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Superior battlefield Situational Awareness (SA) requires timely and coherent integration of various sensor modalities to provide the most complete, real-time picture of in-theater activities. In this work, we introduce Acoustic Classification at the Edge (ACE), an ATAK plugin for improved acoustic SA, to move beyond traditional full-motion video and geospatial data typically employed for SA, and instead focus on acoustic intelligence. Our Android Tactical Awareness Kit (ATAK) plugin is able to perform on-device audio recording, classification, labeling, and autonomous reach-back to the cloud, when available, to enable warfighters to improve SA over time. As part of ACE, we detail a machine learning analytic designed to classify acoustic sources directly at the edge, with a case study on firearm classification. We also detail the cloud infrastructure necessary to support it. This paper describes the application and cloud architecture, in-theater operations, and experimental results after having deployed the plugin on ATAK. Finally, we propose future directions for acoustic classification at the edge based on our findings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ACE:用于增强边缘声学态势感知的ATAK插件
先进的战场态势感知(SA)需要及时、连贯地集成各种传感器模式,以提供最完整、实时的战场活动图像。在这项工作中,我们引入了声学边缘分类(ACE),这是一个用于改进声学SA的ATAK插件,超越了通常用于声学SA的传统全动态视频和地理空间数据,而是专注于声学智能。我们的安卓战术感知工具包(ATAK)插件能够执行设备上的音频记录、分类、标签和自动到达云端,当可用时,使作战人员能够随着时间的推移提高SA。作为ACE的一部分,我们详细介绍了一种旨在直接在边缘对声源进行分类的机器学习分析,并对枪支分类进行了案例研究。我们还详细介绍了支持它所需的云基础设施。本文介绍了该插件在ATAK上部署后的应用和云架构、剧院内操作以及实验结果。最后,在此基础上提出了未来边缘声学分类的发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RF-based Network Inference: Theoretical Foundations Security Threats Analysis of the Unmanned Aerial Vehicle System Using Distributed Ledgers For Command and Control – Concepts and Challenges DerechoDDS: Strongly Consistent Data Distribution for Mission-Critical Applications CUE: A Standalone Testbed for 5G Experimentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1