Performance Evaluation of 3D Local Surface Descriptors for Low and High Resolution Range Image Registration

S. A. A. Shah, Bennamoun, F. Boussaïd
{"title":"Performance Evaluation of 3D Local Surface Descriptors for Low and High Resolution Range Image Registration","authors":"S. A. A. Shah, Bennamoun, F. Boussaïd","doi":"10.1109/DICTA.2014.7008123","DOIUrl":null,"url":null,"abstract":"Despite the advent and popularity of low-cost commercial sensors (e.g., Microsoft Kinect), research in 3D vision still primarily focuses on the development of advanced algorithms geared towards high resolution data. This paper presents a comparative performance evaluation of renowned state-of-the-art 3D local surface descriptors for the task of registration of both high and low resolution range image data. The datasets used in these experiments are the renowned high resolution Stanford 3D models dataset and challenging low resolution Washington RGB-D object dataset. Experimental results show that the performance of certain local surface descriptors is significantly affected by low resolution data.","PeriodicalId":146695,"journal":{"name":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2014.7008123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Despite the advent and popularity of low-cost commercial sensors (e.g., Microsoft Kinect), research in 3D vision still primarily focuses on the development of advanced algorithms geared towards high resolution data. This paper presents a comparative performance evaluation of renowned state-of-the-art 3D local surface descriptors for the task of registration of both high and low resolution range image data. The datasets used in these experiments are the renowned high resolution Stanford 3D models dataset and challenging low resolution Washington RGB-D object dataset. Experimental results show that the performance of certain local surface descriptors is significantly affected by low resolution data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
三维局部表面描述符在低分辨率和高分辨率距离图像配准中的性能评价
尽管低成本商业传感器(如微软Kinect)的出现和普及,3D视觉的研究仍然主要集中在面向高分辨率数据的先进算法的开发上。本文介绍了著名的最先进的三维局部表面描述符在高分辨率和低分辨率范围图像数据配准任务中的比较性能评估。这些实验中使用的数据集是著名的高分辨率斯坦福3D模型数据集和具有挑战性的低分辨率华盛顿RGB-D对象数据集。实验结果表明,局部表面描述符的性能受到低分辨率数据的显著影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Reconstruction of Planar Patches Seen by Omnidirectional Cameras A Blind and Robust Video Watermarking Scheme Using Chrominance Embedding Multi-Focus Image Fusion via Boundary Finding and Multi-Scale Morphological Focus-Measure Effect of Smoothing on Sparsity Prior CT Reconstruction Discriminative Key Pose Extraction Using Extended LC-KSVD for Action Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1