Jianyong Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Yanyong Zhang, S. Nagar
{"title":"Synthesizing Representative I/O Workloads for TPC-H","authors":"Jianyong Zhang, A. Sivasubramaniam, H. Franke, N. Gautam, Yanyong Zhang, S. Nagar","doi":"10.1109/HPCA.2004.10019","DOIUrl":null,"url":null,"abstract":"Synthesizing I/O requests that can accurately capture workload behavior is extremely valuable for the design, implementation and optimization of disk subsystems. This paper presents a synthetic workload generator for TPC-H, an important decision-support commercial workload, by completely characterizing the arrival and access patterns of its queries. We present a novel approach for parameterizing the behavior of inter-mingling streams of sequential requests, and exploit correlations between multiple attributes of these requests, to generate disk block-level traces that are shown to accurately mimic the behavior of a real trace in terms of response time characteristics for each TPC-H query.","PeriodicalId":145009,"journal":{"name":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th International Symposium on High Performance Computer Architecture (HPCA'04)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCA.2004.10019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55
Abstract
Synthesizing I/O requests that can accurately capture workload behavior is extremely valuable for the design, implementation and optimization of disk subsystems. This paper presents a synthetic workload generator for TPC-H, an important decision-support commercial workload, by completely characterizing the arrival and access patterns of its queries. We present a novel approach for parameterizing the behavior of inter-mingling streams of sequential requests, and exploit correlations between multiple attributes of these requests, to generate disk block-level traces that are shown to accurately mimic the behavior of a real trace in terms of response time characteristics for each TPC-H query.