Automated prediction of defect severity based on codifying design knowledge using ontologies

M. Iliev, Bilal Karasneh, M. Chaudron, E. Essenius
{"title":"Automated prediction of defect severity based on codifying design knowledge using ontologies","authors":"M. Iliev, Bilal Karasneh, M. Chaudron, E. Essenius","doi":"10.1109/RAISE.2012.6227962","DOIUrl":null,"url":null,"abstract":"Assessing severity of software defects is essential for prioritizing fixing activities as well as for assessing whether the quality level of a software system is good enough for release. In filling out defect reports, developers routinely fill out default values for the severity levels. The purpose of this research is to automate the prediction of defect severity. Our aim is to research how this severity prediction can be achieved through reasoning about the requirements and the design of a system using ontologies. In this paper we outline our approach based on an industrial case study.","PeriodicalId":114731,"journal":{"name":"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 First International Workshop on Realizing AI Synergies in Software Engineering (RAISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAISE.2012.6227962","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Assessing severity of software defects is essential for prioritizing fixing activities as well as for assessing whether the quality level of a software system is good enough for release. In filling out defect reports, developers routinely fill out default values for the severity levels. The purpose of this research is to automate the prediction of defect severity. Our aim is to research how this severity prediction can be achieved through reasoning about the requirements and the design of a system using ontologies. In this paper we outline our approach based on an industrial case study.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于使用本体编码设计知识的缺陷严重程度的自动预测
评估软件缺陷的严重程度对于确定修复活动的优先级以及评估软件系统的质量水平是否足以发布是必不可少的。在填写缺陷报告时,开发人员通常会填写严重性级别的默认值。本研究的目的是自动化缺陷严重程度的预测。我们的目标是研究如何通过对需求的推理和使用本体的系统设计来实现这种严重性预测。在本文中,我们概述了基于工业案例研究的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Synchronizing domain models with natural language specifications The role of Artificial Intelligence in Software Engineering On software engineering repositories and their open problems Context-based search to overcome learning barriers in software development Clone detection meets Semantic Web-based transitive closure computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1