{"title":"Distributed Fault-Tolerant Topology Control in Static and Mobile Wireless Sensor Networks","authors":"I. Saha, L. K. Sambasivan, R. Patro, S. K. Ghosh","doi":"10.1109/COMSWA.2007.382434","DOIUrl":null,"url":null,"abstract":"In wireless sensor networks, minimizing power consumption and at the same time maintaining desired properties in the network topology is of prime importance. In this work, we present a distributed algorithm for assigning minimum possible power to all the nodes in the wireless sensor network, such that the network is K-connected. In this algorithm, a node collects the location and maximum power information from all the nodes in its vicinity, and then it adjusts the powers of the nodes in its vicinity in such a way that it can reach all the nodes in the vicinity through K optimal vertex-disjoint paths. We prove that, if each node maintains K optimal vertex-disjoint paths to all the nodes in its vicinity then the resulting topology is globally K-connected, provided the topology obtained when all nodes transmit with their maximum power Gmax is K-connected. This topology control algorithm has been extended to mobile scenario and the proof of connectivity in the mobile scenario has been presented. Simulation results show that significant power saving can be achieved by using this algorithm.","PeriodicalId":191295,"journal":{"name":"2007 2nd International Conference on Communication Systems Software and Middleware","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 2nd International Conference on Communication Systems Software and Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSWA.2007.382434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
In wireless sensor networks, minimizing power consumption and at the same time maintaining desired properties in the network topology is of prime importance. In this work, we present a distributed algorithm for assigning minimum possible power to all the nodes in the wireless sensor network, such that the network is K-connected. In this algorithm, a node collects the location and maximum power information from all the nodes in its vicinity, and then it adjusts the powers of the nodes in its vicinity in such a way that it can reach all the nodes in the vicinity through K optimal vertex-disjoint paths. We prove that, if each node maintains K optimal vertex-disjoint paths to all the nodes in its vicinity then the resulting topology is globally K-connected, provided the topology obtained when all nodes transmit with their maximum power Gmax is K-connected. This topology control algorithm has been extended to mobile scenario and the proof of connectivity in the mobile scenario has been presented. Simulation results show that significant power saving can be achieved by using this algorithm.