Outage data collection and parameter estimation for an improved probabilistic contigency analysis

M. Yue, Xiao-yu Wang
{"title":"Outage data collection and parameter estimation for an improved probabilistic contigency analysis","authors":"M. Yue, Xiao-yu Wang","doi":"10.1109/PESGM.2015.7286042","DOIUrl":null,"url":null,"abstract":"Probabilistic risk assessment (PRA) techniques are increasingly being used in electric power industry applications for better coping with uncertainties over deterministic approaches. One application where PRA techniques can add value is data analysis for parameters such as outage frequency. Focusing on a probabilistic contingency analysis (PCA), this study examines the issue of obtaining a point estimate of outage statistics by lumping or pooling outage data records together from different sources. A Pearson Chi-square test is adopted to determine the poolability of data, and a lognormal distribution is used to model the data source variability and capture variations of operation and maintenance practices among different utilities. The distribution parameters representing outage frequencies and durations are calculated from the raw outage data. An improved PCA scheme based on the outcomes of this study is proposed and being implemented.","PeriodicalId":423639,"journal":{"name":"2015 IEEE Power & Energy Society General Meeting","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Power & Energy Society General Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PESGM.2015.7286042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Probabilistic risk assessment (PRA) techniques are increasingly being used in electric power industry applications for better coping with uncertainties over deterministic approaches. One application where PRA techniques can add value is data analysis for parameters such as outage frequency. Focusing on a probabilistic contingency analysis (PCA), this study examines the issue of obtaining a point estimate of outage statistics by lumping or pooling outage data records together from different sources. A Pearson Chi-square test is adopted to determine the poolability of data, and a lognormal distribution is used to model the data source variability and capture variations of operation and maintenance practices among different utilities. The distribution parameters representing outage frequencies and durations are calculated from the raw outage data. An improved PCA scheme based on the outcomes of this study is proposed and being implemented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
改进的概率关联分析的停机数据收集和参数估计
概率风险评估(PRA)技术越来越多地用于电力工业应用,以更好地应对确定性方法的不确定性。PRA技术可以增加价值的一个应用是对停机频率等参数的数据分析。本研究将重点放在概率偶然性分析(PCA)上,研究了通过将来自不同来源的停机数据记录集中或池化来获得停机统计数据的点估计的问题。采用皮尔逊卡方检验来确定数据的可池性,并使用对数正态分布来模拟数据源的可变性,并捕获不同公用事业之间运维实践的变化。表示停机频率和持续时间的分布参数是根据原始停机数据计算出来的。基于本研究的结果,提出并实施了一种改进的主成分分析方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Information theoretic index for regime shifts in power systems Optimal voltage regulation for unbalanced distribution networks considering distributed energy resources Evaluation of NERC's BRD frequency control standard in hydroelectric generation Distributed multi-agent scheme to improve dynamic voltage stability of distribution networks A multiagent system for residential DC microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1