Parallel training for neural networks using PVM with shared memory

Marcelo A. A. Araújo, E. Teixeira, Fábio R. Camargo, João P. V. Almeida
{"title":"Parallel training for neural networks using PVM with shared memory","authors":"Marcelo A. A. Araújo, E. Teixeira, Fábio R. Camargo, João P. V. Almeida","doi":"10.1109/CEC.2003.1299821","DOIUrl":null,"url":null,"abstract":"We present a peculiar parallel implementation of artificial neural networks using the backpropagation training algorithm. The message pass interface PVM is used in the Linux operating system environment, implemented in a cluster of IBM-PC machines. An optimized object-oriented framework to train neural networks, developed in C++, is part of the system presented. A shared memory framework was implemented to improve the training phase. One of the advantages of the system is the low cost, considering that its performance can be compared to similar powerful parallel machines.","PeriodicalId":416243,"journal":{"name":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2003 Congress on Evolutionary Computation, 2003. CEC '03.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2003.1299821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We present a peculiar parallel implementation of artificial neural networks using the backpropagation training algorithm. The message pass interface PVM is used in the Linux operating system environment, implemented in a cluster of IBM-PC machines. An optimized object-oriented framework to train neural networks, developed in C++, is part of the system presented. A shared memory framework was implemented to improve the training phase. One of the advantages of the system is the low cost, considering that its performance can be compared to similar powerful parallel machines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于共享内存的PVM神经网络并行训练
我们提出了一种使用反向传播训练算法的人工神经网络的特殊并行实现。消息传递接口PVM在Linux操作系统环境中使用,在IBM-PC机器集群中实现。本文介绍了一个优化的面向对象的神经网络训练框架,该框架是用c++开发的。为了改进训练阶段,实现了共享内存框架。考虑到其性能可以与同类强大的并行机相比较,该系统的优点之一是成本低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Searching oligo sets of human chromosome 12 using evolutionary strategies A nonlinear control system design based on HJB/HJI/FBI equations via differential genetic programming approach Particle swarm optimizers for Pareto optimization with enhanced archiving techniques Epigenetic programming: an approach of embedding epigenetic learning via modification of histones in genetic programming A new particle swarm optimiser for linearly constrained optimisation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1