Identifying users profiles from mobile calls habits

Barbara Furletti, L. Gabrielli, C. Renso, S. Rinzivillo
{"title":"Identifying users profiles from mobile calls habits","authors":"Barbara Furletti, L. Gabrielli, C. Renso, S. Rinzivillo","doi":"10.1145/2346496.2346500","DOIUrl":null,"url":null,"abstract":"The huge quantity of positioning data registered by our mobile phones stimulates several research questions, mainly originating from the combination of this huge quantity of data with the extreme heterogeneity of the tracked user and the low granularity of the data. We propose a methodology to partition the users tracked by GSM phone calls into profiles like resident, commuters, in transit and tourists. The methodology analyses the phone calls with a combination of top-down and bottom up techniques where the top-down phase is based on a sequence of queries that identify some behaviors. The bottom-up is a machine learning phase to find groups of similar call behavior, thus refining the previous step. The integration of the two steps results in the partitioning of mobile traces into these four user categories that can be deeper analyzed, for example to understand the tourist movements in city or the traffic effects of commuters. An experiment on the identification of user profiles on a real dataset collecting call records from one month in the city of Pisa illustrates the methodology.","PeriodicalId":350527,"journal":{"name":"UrbComp '12","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"UrbComp '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2346496.2346500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

The huge quantity of positioning data registered by our mobile phones stimulates several research questions, mainly originating from the combination of this huge quantity of data with the extreme heterogeneity of the tracked user and the low granularity of the data. We propose a methodology to partition the users tracked by GSM phone calls into profiles like resident, commuters, in transit and tourists. The methodology analyses the phone calls with a combination of top-down and bottom up techniques where the top-down phase is based on a sequence of queries that identify some behaviors. The bottom-up is a machine learning phase to find groups of similar call behavior, thus refining the previous step. The integration of the two steps results in the partitioning of mobile traces into these four user categories that can be deeper analyzed, for example to understand the tourist movements in city or the traffic effects of commuters. An experiment on the identification of user profiles on a real dataset collecting call records from one month in the city of Pisa illustrates the methodology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从手机通话习惯中识别用户资料
我们手机注册的海量定位数据引发了几个研究问题,主要源于这海量数据与被跟踪用户的极端异质性和数据的低粒度相结合。我们提出了一种方法,将GSM电话跟踪的用户划分为居民、通勤者、过境者和游客等。该方法结合自顶向下和自底向上技术分析电话呼叫,其中自顶向下阶段基于识别某些行为的查询序列。自底向上是一个机器学习阶段,用于找到类似调用行为的组,从而改进前一步。这两个步骤的整合导致将移动轨迹划分为这四个用户类别,可以进行更深入的分析,例如了解城市中的游客运动或通勤者的交通影响。在一个收集了比萨市一个月的电话记录的真实数据集上进行的用户档案识别实验说明了这种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimation of urban commuting patterns using cellphone network data Sensing places' life to make city smarter Exploration of ground truth from raw GPS data Mining traffic incidents to forecast impact Using smart card data to extract passenger's spatio-temporal density and train's trajectory of MRT system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1