An improved tropospheric NO2 column retrieval algorithm for TROPOMI over Europe

Song Liu, P. Valks, G. Pinardi, Jian Xu, K. Chan, A. Argyrouli, R. Lutz, S. Beirle, E. Khorsandi, F. Baier, V. Huijnen, A. Bais, Sebastian Donner, S. Dörner, M. Gratsea, F. Hendrick, Dimitris Karagkiozidis, Kezia Lange, A. Piters, Julia Remmers, A. Richter, M. Van Roozendael, T. Wagner, M. Wenig, D. Loyola
{"title":"An improved tropospheric NO2 column retrieval algorithm for TROPOMI over Europe","authors":"Song Liu, P. Valks, G. Pinardi, Jian Xu, K. Chan, A. Argyrouli, R. Lutz, S. Beirle, E. Khorsandi, F. Baier, V. Huijnen, A. Bais, Sebastian Donner, S. Dörner, M. Gratsea, F. Hendrick, Dimitris Karagkiozidis, Kezia Lange, A. Piters, Julia Remmers, A. Richter, M. Van Roozendael, T. Wagner, M. Wenig, D. Loyola","doi":"10.5194/AMT-2021-39","DOIUrl":null,"url":null,"abstract":"Abstract. Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric NO2 on the viewing geometry by up to 2 × 1014 molec/cm2. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is 3.5 × 1014 molec/cm2 for polluted conditions. Applied to actual measurements, the smooth variation of stratospheric NO2 at low latitudes is conserved, and stronger stratospheric variation at higher latitudes are captured. For AMF calculation, the climatological surface albedo data is replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori NO2 profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a clouds-as-layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the clouds-as-reflecting-boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors. For the error analysis, the tropospheric AMF uncertainty, which is the largest source of NO2 uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric NO2 column in the 30–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the improved tropospheric NO2 data shows good correlations for nine European urban/suburban stations with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from −55.3 % to −34.7 % on average.","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/AMT-2021-39","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Abstract. Launched in October 2017, the TROPOspheric Monitoring Instrument (TROPOMI) aboard Sentinel-5 Precursor provides the potential to monitor air quality over point sources across the globe with a spatial resolution as high as 5.5 km × 3.5 km (7 km × 3.5 km before 6 August 2019). The nitrogen dioxide (NO2) retrieval algorithm for the TROPOMI instrument consists of three steps: the spectral fitting of the slant column, the separation of stratospheric and tropospheric contributions, and the conversion of the slant column to a vertical column using an air mass factor (AMF) calculation. In this work, an improved tropospheric NO2 retrieval algorithm from TROPOMI measurements over Europe is presented. The stratospheric estimation is implemented using the STRatospheric Estimation Algorithm from Mainz (STREAM), which was developed as a verification algorithm for TROPOMI and does not require chemistry transport model data as input. A directionally dependent STREAM (DSTREAM) is developed to correct for the dependency of the stratospheric NO2 on the viewing geometry by up to 2 × 1014 molec/cm2. Applied to synthetic TROPOMI data, the uncertainty in the stratospheric column is 3.5 × 1014 molec/cm2 for polluted conditions. Applied to actual measurements, the smooth variation of stratospheric NO2 at low latitudes is conserved, and stronger stratospheric variation at higher latitudes are captured. For AMF calculation, the climatological surface albedo data is replaced by geometry-dependent effective Lambertian equivalent reflectivity (GE_LER) obtained directly from TROPOMI measurements with a high spatial resolution. Mesoscale-resolution a priori NO2 profiles are obtained from the regional POLYPHEMUS/DLR chemistry transport model with the TNO-MACC emission inventory. Based on the latest TROPOMI operational cloud parameters, a more realistic cloud treatment is provided by a clouds-as-layers (CAL) model, which treats the clouds as uniform layers of water droplets, instead of the clouds-as-reflecting-boundaries (CRB) model, in which clouds are simplified as Lambertian reflectors. For the error analysis, the tropospheric AMF uncertainty, which is the largest source of NO2 uncertainty for polluted scenarios, ranges between 20 % and 50 %, leading to a total uncertainty in the tropospheric NO2 column in the 30–60 % range. From a validation performed with ground-based multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements, the improved tropospheric NO2 data shows good correlations for nine European urban/suburban stations with an average correlation coefficient of 0.78. The implementation of the algorithm improvements leads to a decrease of the relative difference from −55.3 % to −34.7 % on average.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种改进的欧洲TROPOMI对流层NO2柱检索算法
摘要。2017年10月发射的哨兵5号前驱卫星上的对流层监测仪器(TROPOMI)提供了监测全球点源空气质量的潜力,其空间分辨率高达5.5公里× 3.5公里(2019年8月6日前为7公里× 3.5公里)。TROPOMI仪器的二氧化氮(NO2)检索算法包括三个步骤:斜柱的光谱拟合、平流层和对流层贡献的分离以及利用空气质量因子(AMF)计算将斜柱转换为垂直柱。在这项工作中,提出了一种改进的troomi在欧洲的对流层NO2检索算法。平流层估计使用来自Mainz (STREAM)的平流层估计算法实现,该算法是作为TROPOMI的验证算法而开发的,不需要化学输运模型数据作为输入。开发了一种方向依赖流(DSTREAM)来校正平流层NO2对观测几何形状的依赖性,校正精度可达2 × 1014分子/cm2。应用于合成TROPOMI数据,在污染条件下平流层柱的不确定度为3.5 × 1014分子/cm2。应用于实际测量,平流层NO2在低纬度的平滑变化得到了守恒,而在高纬度的平流层NO2的变化得到了较强的捕捉。在AMF计算中,气候地表反照率数据被直接从TROPOMI测量中获得的几何相关的有效朗伯等效反射率(GE_LER)所取代,具有高空间分辨率。利用区域POLYPHEMUS/DLR化学输运模式和TNO-MACC排放清单,获得了NO2中尺度分辨率先验剖面。基于最新的TROPOMI操作云参数,云作为层(CAL)模型提供了一种更真实的云处理方法,它将云视为均匀的水滴层,而不是云作为反射边界(CRB)模型,在该模型中,云被简化为朗伯反射体。在误差分析中,对流层AMF不确定性(污染情景下NO2不确定性的最大来源)在20% ~ 50%之间,导致对流层NO2列的总不确定性在30 ~ 60%之间。通过地面多轴差分吸收光谱(MAX-DOAS)测量验证,改进后的对流层NO2数据在9个欧洲城市/郊区站具有良好的相关性,平均相关系数为0.78。算法改进后,相对差值平均从- 55.3%降低到- 34.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6×6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Fill dynamics and sample mixing in the AirCore  Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1