Visualization of high throughput biological data

Leishi Zhang, J. Kuljis, Xiaohui Liu
{"title":"Visualization of high throughput biological data","authors":"Leishi Zhang, J. Kuljis, Xiaohui Liu","doi":"10.2498/iti.2012.0380","DOIUrl":null,"url":null,"abstract":"The rapid advances in high throughput biotechnology pose great challenges to the data analysis and visualization community. The sheer volume of data and complex biological problems that need to be answered increase the demand for effective data analysis and visualization tools which provide intuitive visual representation and allow full exploitation of the data. In this paper, we examine various visualization techniques that have been applied to high throughput biological data analysis. Several key problem areas as well as possible solutions are explored, and some challenging open issues are highlighted.","PeriodicalId":135105,"journal":{"name":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ITI 2012 34th International Conference on Information Technology Interfaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2498/iti.2012.0380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The rapid advances in high throughput biotechnology pose great challenges to the data analysis and visualization community. The sheer volume of data and complex biological problems that need to be answered increase the demand for effective data analysis and visualization tools which provide intuitive visual representation and allow full exploitation of the data. In this paper, we examine various visualization techniques that have been applied to high throughput biological data analysis. Several key problem areas as well as possible solutions are explored, and some challenging open issues are highlighted.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高通量生物数据可视化
高通量生物技术的快速发展对数据分析和可视化领域提出了巨大的挑战。大量的数据和复杂的生物学问题需要解决,这增加了对有效的数据分析和可视化工具的需求,这些工具可以提供直观的视觉表示,并允许充分利用数据。在本文中,我们研究了各种可视化技术,已应用于高通量生物数据分析。探讨了几个关键问题领域以及可能的解决方案,并强调了一些具有挑战性的开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Risk management and business credit scoring GAAP. genetic algorithm with auxiliary populations applied to continuous optimization problems BICIKELJ: Environmental data mining on the bicycle XML schema domain identification Acceptance of verificator by information science students
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1