Quentin Brefort, L. Jaulin, M. Ceberio, V. Kreinovich
{"title":"If we take into account that constraints are soft, then processing constraints becomes algorithmically solvable","authors":"Quentin Brefort, L. Jaulin, M. Ceberio, V. Kreinovich","doi":"10.1109/CIES.2014.7011823","DOIUrl":null,"url":null,"abstract":"Constraints are ubiquitous in science and engineering. Constraints describe the available information about the state of the system, constraints describe possible relation between current and future states of the system, constraints describe which future states we would like to obtain. To solve problems from engineering and science, it is therefore necessary to process constraints. We show that if we treat constraints as hard (crisp), with all the threshold values exactly known, then in the general case, all the corresponding computational problems become algorithmically unsolvable. However, these problems become algorithmically solvable if we take into account that in reality, constraints are soft: we do not know the exact values of the corresponding thresholds, we do not know the exact dependence between the present and future states, etc.","PeriodicalId":287779,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Engineering Solutions (CIES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIES.2014.7011823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Constraints are ubiquitous in science and engineering. Constraints describe the available information about the state of the system, constraints describe possible relation between current and future states of the system, constraints describe which future states we would like to obtain. To solve problems from engineering and science, it is therefore necessary to process constraints. We show that if we treat constraints as hard (crisp), with all the threshold values exactly known, then in the general case, all the corresponding computational problems become algorithmically unsolvable. However, these problems become algorithmically solvable if we take into account that in reality, constraints are soft: we do not know the exact values of the corresponding thresholds, we do not know the exact dependence between the present and future states, etc.