Multiresolution approaches to representation and visualization of large influenza virus sequence datasets

L. Zaslavsky, Yīmíng Bào, T. Tatusova
{"title":"Multiresolution approaches to representation and visualization of large influenza virus sequence datasets","authors":"L. Zaslavsky, Yīmíng Bào, T. Tatusova","doi":"10.1109/BIBMW.2007.4425408","DOIUrl":null,"url":null,"abstract":"Rapid growth of the amount of genome sequence data requires enhancing exploratory analysis tools, with analysis being performed in a fast and robust manner. Users need data representations serving different purposes: from seeing overall structure and data coverage to evolutionary processes during a particular season. Our approach to the problem is in constructing hierarchies of data representations, and providing users with representations adaptable to specific goals. It can be done efficiently because the structure of a typical influenza dataset is characterized by low estimated values of the Kolmogorov (box) dimension. Multi-scale methodologies allow interactive visual representation of the dataset and accelerate computations by importance sampling. Our tree visualization approach is based on a subtree aggregation with subscale resolution. It allows interactive refinements and coarsening of subtree views. For importance sampling large influenza datasets, we construct sets of well-scattered points (e-nets). While a tree build for a global sample provides a coarse-level representation of the whole dataset, it can be complemented by trees showing more details in chosen areas. To reflect both global dataset structure and local details correctly, we perform local refinement gradually, using a multiscale hierarchy of e-nets. Our hierarchical representations allow fast metadata searching.","PeriodicalId":260286,"journal":{"name":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Bioinformatics and Biomedicine Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBMW.2007.4425408","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Rapid growth of the amount of genome sequence data requires enhancing exploratory analysis tools, with analysis being performed in a fast and robust manner. Users need data representations serving different purposes: from seeing overall structure and data coverage to evolutionary processes during a particular season. Our approach to the problem is in constructing hierarchies of data representations, and providing users with representations adaptable to specific goals. It can be done efficiently because the structure of a typical influenza dataset is characterized by low estimated values of the Kolmogorov (box) dimension. Multi-scale methodologies allow interactive visual representation of the dataset and accelerate computations by importance sampling. Our tree visualization approach is based on a subtree aggregation with subscale resolution. It allows interactive refinements and coarsening of subtree views. For importance sampling large influenza datasets, we construct sets of well-scattered points (e-nets). While a tree build for a global sample provides a coarse-level representation of the whole dataset, it can be complemented by trees showing more details in chosen areas. To reflect both global dataset structure and local details correctly, we perform local refinement gradually, using a multiscale hierarchy of e-nets. Our hierarchical representations allow fast metadata searching.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型流感病毒序列数据集的多分辨率表示和可视化方法
基因组序列数据量的快速增长需要增强探索性分析工具,以快速和稳健的方式进行分析。用户需要满足不同目的的数据表示:从查看整体结构和数据覆盖到特定季节的演变过程。我们解决这个问题的方法是构建数据表示的层次结构,并为用户提供适合特定目标的表示。这可以有效地完成,因为典型流感数据集的结构特点是科尔莫戈罗夫(箱)维的估定值较低。多尺度方法允许数据集的交互式可视化表示,并通过重要性采样加速计算。我们的树可视化方法是基于具有亚尺度分辨率的子树聚合。它允许对子树视图进行交互细化和粗化。对于重要采样大型流感数据集,我们构建了分散良好的点集(e-nets)。虽然为全局样本构建的树提供了整个数据集的粗略表示,但它可以通过在选定区域显示更多细节的树来补充。为了正确反映全局数据集结构和局部细节,我们使用e-nets的多尺度层次结构逐步进行局部细化。我们的分层表示允许快速的元数据搜索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
V-Lab-Protein: Virtual Collaborative Lab for protein sequence analysis Using fuzzy memberships to core patterns to interpret connectedness in gene expression clusters Rapid computation of large numbers of LOD scores in linkage analysis through polynomial expression of genetic likelihoods Flagellar proteins prediction after sequence-structure alignments of coronin and Arp2/3 complex in Leishmania spp. Structural characterization of RNA-binding sites of proteins: Preliminary results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1