Evaluating Pauses in Holter ECG Signals

F. Plesinger, Adam Ivora, J. Halámek, I. Viscor, R. Smíšek, V. Bulkova, P. Jurák
{"title":"Evaluating Pauses in Holter ECG Signals","authors":"F. Plesinger, Adam Ivora, J. Halámek, I. Viscor, R. Smíšek, V. Bulkova, P. Jurák","doi":"10.23919/cinc53138.2021.9662914","DOIUrl":null,"url":null,"abstract":"Background: Information related to pauses in heart activity is an important output of ECG Holter monitoring reports. This information should be quickly assessed from inter-beat (RR) intervals only (a naïve approach). However, evaluating pauses in Holter ECGs recorded during usual daily activities can be more challenging due to signal lower quality. In this paper, we propose a method to improve pause detection in heart activity from Holter ECG recordings. Method: We used 978 recordings (length 45 seconds, 1-lead ECG, sampled at 200 or 250 Hz) with a known longest RR interval (from 1.12 to 19.0 seconds, mean duration of 2.72 ± 1.26 seconds). QRS complexes were detected by a convolutional neural network with a recurrent layer. This study started with the automated removal of suspicious QRS complexes by a QRS amplitude. Then we iterated through RR intervals, seeking saturated areas, missed QRS, or a strong noise; potentially, examined RR intervals were further refined. The longest interval was reported for each recording. Results: The ability to find life-threatening pauses improved from an F1 score of 0.95 to 0.97. Conclusion: The presented method improved pause detection in Holter ECG recordings compared to the naïve approach.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Information related to pauses in heart activity is an important output of ECG Holter monitoring reports. This information should be quickly assessed from inter-beat (RR) intervals only (a naïve approach). However, evaluating pauses in Holter ECGs recorded during usual daily activities can be more challenging due to signal lower quality. In this paper, we propose a method to improve pause detection in heart activity from Holter ECG recordings. Method: We used 978 recordings (length 45 seconds, 1-lead ECG, sampled at 200 or 250 Hz) with a known longest RR interval (from 1.12 to 19.0 seconds, mean duration of 2.72 ± 1.26 seconds). QRS complexes were detected by a convolutional neural network with a recurrent layer. This study started with the automated removal of suspicious QRS complexes by a QRS amplitude. Then we iterated through RR intervals, seeking saturated areas, missed QRS, or a strong noise; potentially, examined RR intervals were further refined. The longest interval was reported for each recording. Results: The ability to find life-threatening pauses improved from an F1 score of 0.95 to 0.97. Conclusion: The presented method improved pause detection in Holter ECG recordings compared to the naïve approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态心电图信号暂停的评估
背景:与心脏活动暂停相关的信息是心电图动态心电图监测报告的重要输出。这些信息应该仅从搏动间隔(naïve方法)中快速评估。然而,由于信号质量较低,评估在日常活动中记录的动态心电图暂停可能更具挑战性。在本文中,我们提出了一种改进从动态心电图记录中检测心脏活动暂停的方法。方法:我们使用978个记录(长度为45秒,单导联心电图,采样频率为200或250 Hz),已知最长RR间隔(1.12至19.0秒,平均持续时间2.72±1.26秒)。QRS复合物的检测采用带有循环层的卷积神经网络。这项研究开始于通过QRS振幅自动去除可疑的QRS复合物。然后,我们通过RR区间迭代,寻找饱和区域、遗漏的QRS或强噪声;潜在地,检查的RR区间进一步细化。报告每个记录的最长间隔。结果:发现危及生命的暂停的能力从F1得分0.95提高到0.97。结论:与naïve方法相比,该方法改善了动态心电图记录的暂停检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Influence of Hydroxychloroquine Dosage on the Occurrence of Arrhythmia in COVID-19 Infected Ventricle Guinea Pig ECG Changes under the Effect of New Drug Candidate TP28b Electrocardiographic Imaging of Sinus Rhythm in Pig Hearts Using Bayesian Maximum A Posteriori Estimation Sensitivity Analysis and Parameter Identification of a Cardiovascular Model in Aortic Stenosis Semi-Supervised vs. Supervised Learning for Discriminating Atrial Flutter Mechanisms Using the 12-lead ECG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1