PiMulator: a Fast and Flexible Processing-in-Memory Emulation Platform

Sergiu Mosanu, M. N. Sakib, Tommy Tracy, Ersin Cukurtas, Alif Ahmed, Preslav Ivanov, S. Khan, K. Skadron, M. Stan
{"title":"PiMulator: a Fast and Flexible Processing-in-Memory Emulation Platform","authors":"Sergiu Mosanu, M. N. Sakib, Tommy Tracy, Ersin Cukurtas, Alif Ahmed, Preslav Ivanov, S. Khan, K. Skadron, M. Stan","doi":"10.23919/DATE54114.2022.9774614","DOIUrl":null,"url":null,"abstract":"Motivated by the memory wall problem, researchers propose many new Processing-in-Memory (PiM) architectures to bring computation closer to data. However, evaluating the performance of these emerging architectures involves using a myriad of tools, including circuit simulators, behavioral RTL or software simulation models, hardware approximations, etc. It is challenging to mimic both software and hardware aspects of a PiM architecture using the currently available tools with high performance and fidelity. Until and unless actual products that include PiM become available, the next best thing is to emulate various hardware PiM solutions on FPGA fabric and boards. This paper presents a modular, parameterizable, FPGA synthesizable soft PiM model suitable for prototyping and rapid evaluation of Processing-in-Memory architectures. The PiM model is implemented in System Verilog and allows users to generate any desired memory configuration on the FPGA fabric with complete control over the structure and distribution of the PiM logic units. Moreover, the model is compatible with the LiteX framework, which provides a high degree of usability and compatibility with the FPGA and RISC-V ecosystem. Thus, the framework enables architects to easily prototype, emulate and evaluate a wide range of emerging PiM architectures and designs. We demonstrate strategies to model several pioneering bitwise-PiM architectures and provide detailed benchmark performance results that demonstrate the platform's ability to facilitate design space exploration. We observe an emulation vs. simulation weighted-average speedup of 28× when running a memory benchmark workload. The model can utilize 100% BRAM and only 1% FF and LUT of an Alveo U280 FPGA board. The project is entirely open-source.","PeriodicalId":232583,"journal":{"name":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/DATE54114.2022.9774614","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Motivated by the memory wall problem, researchers propose many new Processing-in-Memory (PiM) architectures to bring computation closer to data. However, evaluating the performance of these emerging architectures involves using a myriad of tools, including circuit simulators, behavioral RTL or software simulation models, hardware approximations, etc. It is challenging to mimic both software and hardware aspects of a PiM architecture using the currently available tools with high performance and fidelity. Until and unless actual products that include PiM become available, the next best thing is to emulate various hardware PiM solutions on FPGA fabric and boards. This paper presents a modular, parameterizable, FPGA synthesizable soft PiM model suitable for prototyping and rapid evaluation of Processing-in-Memory architectures. The PiM model is implemented in System Verilog and allows users to generate any desired memory configuration on the FPGA fabric with complete control over the structure and distribution of the PiM logic units. Moreover, the model is compatible with the LiteX framework, which provides a high degree of usability and compatibility with the FPGA and RISC-V ecosystem. Thus, the framework enables architects to easily prototype, emulate and evaluate a wide range of emerging PiM architectures and designs. We demonstrate strategies to model several pioneering bitwise-PiM architectures and provide detailed benchmark performance results that demonstrate the platform's ability to facilitate design space exploration. We observe an emulation vs. simulation weighted-average speedup of 28× when running a memory benchmark workload. The model can utilize 100% BRAM and only 1% FF and LUT of an Alveo U280 FPGA board. The project is entirely open-source.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个快速灵活的内存处理仿真平台
在内存墙问题的激励下,研究人员提出了许多新的内存中处理(PiM)架构,以使计算更接近数据。然而,评估这些新兴架构的性能涉及使用无数的工具,包括电路模拟器,行为RTL或软件仿真模型,硬件近似等。使用当前可用的具有高性能和保真度的工具来模拟PiM体系结构的软件和硬件方面是具有挑战性的。除非包含PiM的实际产品可用,否则最好的办法是在FPGA结构和电路板上模拟各种硬件PiM解决方案。本文提出了一种模块化、可参数化、可FPGA合成的软PiM模型,适用于内存处理体系结构的原型设计和快速评估。PiM模型在System Verilog中实现,允许用户在FPGA结构上生成任何所需的内存配置,并完全控制PiM逻辑单元的结构和分布。此外,该模型与LiteX框架兼容,这为FPGA和RISC-V生态系统提供了高度的可用性和兼容性。因此,该框架使架构师能够轻松地对各种新兴的PiM体系结构和设计进行原型化、模拟和评估。我们演示了几种开创性的位元pim架构的建模策略,并提供了详细的基准性能结果,以证明该平台促进设计空间探索的能力。在运行内存基准测试工作负载时,我们观察到仿真与模拟的加权平均加速提高了28倍。该模型可以利用Alveo U280 FPGA板的100% BRAM和仅1%的FF和LUT。这个项目是完全开源的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DIET: A Dynamic Energy Management Approach for Wearable Health Monitoring Devices NPU-Accelerated Imitation Learning for Thermal- and QoS-Aware Optimization of Heterogeneous Multi-Cores A Precision-Scalable Energy-Efficient Bit-Split-and-Combination Vector Systolic Accelerator for NAS-Optimized DNNs on Edge coxHE: A software-hardware co-design framework for FPGA acceleration of homomorphic computation HELCFL: High-Efficiency and Low-Cost Federated Learning in Heterogeneous Mobile-Edge Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1