Functional connectivity of fractal and oscillatory cortical activity is distinct

Andrea Ibarra Chaoul, M. Siegel
{"title":"Functional connectivity of fractal and oscillatory cortical activity is distinct","authors":"Andrea Ibarra Chaoul, M. Siegel","doi":"10.32470/ccn.2019.1341-0","DOIUrl":null,"url":null,"abstract":"Electrophysiological signals of cortical population activity contain oscillatory and fractal (1/frequency) components. However, the relationship between these components is unclear. To address this, we investigated human resting-state MEG recordings. We applied combined source-analysis, signal orthogonalization and irregular-resampling autospectral analysis (IRASA) to separate oscillatory and fractal components of the MEG signals at the cortical source-level. We then compared the spatial correlation structure of fractal and oscillatory components across the human cortex. We found that these correlation structures differed, which suggests different mechanisms underlying fractal and oscillatory population signal components.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1341-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrophysiological signals of cortical population activity contain oscillatory and fractal (1/frequency) components. However, the relationship between these components is unclear. To address this, we investigated human resting-state MEG recordings. We applied combined source-analysis, signal orthogonalization and irregular-resampling autospectral analysis (IRASA) to separate oscillatory and fractal components of the MEG signals at the cortical source-level. We then compared the spatial correlation structure of fractal and oscillatory components across the human cortex. We found that these correlation structures differed, which suggests different mechanisms underlying fractal and oscillatory population signal components.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分形和振荡皮层活动的功能连通性是明显的
皮层群体活动的电生理信号包含振荡和分形(1/频率)成分。然而,这些成分之间的关系尚不清楚。为了解决这个问题,我们研究了人类静息状态的MEG记录。采用源分析、信号正交化和不规则重采样自谱分析(IRASA)相结合的方法,在皮层源水平上分离MEG信号的振荡成分和分形成分。然后,我们比较了人类皮层分形和振荡成分的空间相关结构。我们发现这些相关结构不同,表明分形和振荡种群信号成分的机制不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1