Data-driven signal decomposition method

Pornchai Chanyagorn, M. Cader, H. Szu
{"title":"Data-driven signal decomposition method","authors":"Pornchai Chanyagorn, M. Cader, H. Szu","doi":"10.1109/ICIA.2005.1635133","DOIUrl":null,"url":null,"abstract":"This paper introduces the data-driven signal decomposition method based on the empirical mode decomposition (EMD) technique. The decomposition process uses the data themselves to derive the base function in order to decompose the one-dimensional signal into a finite set of intrinsic mode signals. The novelty of EMD is that the decomposition does not use any artificial data windowing which implies fewer artifacts in the decomposed signals. The results show that the method can be effectively used in analyzing non-stationary signals. Furthermore, we applied this method to analyze closing equity prices of a financial stock. The result demonstrates the usefulness of the method in analyzing financial time series data, and some practical considerations in envelope estimation.","PeriodicalId":136611,"journal":{"name":"2005 IEEE International Conference on Information Acquisition","volume":"64 6 Suppl 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE International Conference on Information Acquisition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIA.2005.1635133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper introduces the data-driven signal decomposition method based on the empirical mode decomposition (EMD) technique. The decomposition process uses the data themselves to derive the base function in order to decompose the one-dimensional signal into a finite set of intrinsic mode signals. The novelty of EMD is that the decomposition does not use any artificial data windowing which implies fewer artifacts in the decomposed signals. The results show that the method can be effectively used in analyzing non-stationary signals. Furthermore, we applied this method to analyze closing equity prices of a financial stock. The result demonstrates the usefulness of the method in analyzing financial time series data, and some practical considerations in envelope estimation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据驱动的信号分解方法
介绍了基于经验模态分解(EMD)技术的数据驱动信号分解方法。分解过程使用数据本身来推导基函数,以便将一维信号分解成有限的内模态信号集。EMD的新颖之处在于它的分解不使用任何人为的数据窗,这意味着分解后的信号中伪像较少。结果表明,该方法可以有效地用于非平稳信号的分析。此外,我们将此方法应用于分析金融股的收盘价。结果证明了该方法在分析金融时间序列数据方面的有效性,以及包络估计中的一些实际注意事项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A wireless health monitoring system Haptic telemanipulation of soft environment without direct force feedback Leader-formation navigation with sensor constraints Kinematic model aided inertial motion tracking of human upper limb Study on adaptive Kalman filtering algorithms in human movement tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1