Variable step-size strategy for distributed parameter estimation of compressible systems in WSNs

M. O. B. Saeed, A. Zerguine, M. S. Sohail, S. Rehman, W. Ejaz, A. Anpalagan
{"title":"Variable step-size strategy for distributed parameter estimation of compressible systems in WSNs","authors":"M. O. B. Saeed, A. Zerguine, M. S. Sohail, S. Rehman, W. Ejaz, A. Anpalagan","doi":"10.1109/CAMAD.2016.7790321","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) paradigm depends on sensor networks to collect data and perform information processing as well as communication tasks to attain a common goal. This work presents the formulation and analysis of a sparsity-based variable step-size distributed least-mean-square algorithm based on the diffusion cooperation scheme in wireless sensor networks. In particular, the scheme is applied to compressible systems of which the sparse systems are a special case. The performance of the algorithm is assessed for compressible systems in comparison with existing algorithms in order to showcase the superiority of the proposed algorithm. The proposed scheme is then applied to diffusion-based wireless sensor networks for estimating a compressible system and steady-state analysis is carried out for the proposed scheme.","PeriodicalId":207184,"journal":{"name":"2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and Networks (CAMAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAD.2016.7790321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The Internet of Things (IoT) paradigm depends on sensor networks to collect data and perform information processing as well as communication tasks to attain a common goal. This work presents the formulation and analysis of a sparsity-based variable step-size distributed least-mean-square algorithm based on the diffusion cooperation scheme in wireless sensor networks. In particular, the scheme is applied to compressible systems of which the sparse systems are a special case. The performance of the algorithm is assessed for compressible systems in comparison with existing algorithms in order to showcase the superiority of the proposed algorithm. The proposed scheme is then applied to diffusion-based wireless sensor networks for estimating a compressible system and steady-state analysis is carried out for the proposed scheme.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WSNs中可压缩系统分布参数估计的变步长策略
物联网(IoT)范例依赖于传感器网络来收集数据并执行信息处理以及通信任务以实现共同目标。本文提出了一种基于稀疏度的基于扩散协作方案的可变步长分布最小均方算法。特别地,该格式适用于可压缩系统,其中稀疏系统是一种特殊情况。通过与现有算法的比较,对该算法在可压缩系统中的性能进行了评估,以展示该算法的优越性。然后将所提出的方案应用于基于扩散的无线传感器网络,用于估计可压缩系统,并对所提出的方案进行了稳态分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on energy used to deliver H.264/AVC and H.265/HEVC video content On the performance of vehicular communications with a measurement-based radio propagation model Smart street lighting over narrowband PLC in a smart city: The Triangulum case study Using mobile environment sensors for wellness monitoring Priority based VM2M communications over LTE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1