A recognition method of machine-printed monetary amounts based on the two-dimensional segmentation and the bottom-up parsing

Masashi Koga, Ryuji Mine, H. Sako, H. Fujisawa
{"title":"A recognition method of machine-printed monetary amounts based on the two-dimensional segmentation and the bottom-up parsing","authors":"Masashi Koga, Ryuji Mine, H. Sako, H. Fujisawa","doi":"10.1109/ICDAR.2001.953929","DOIUrl":null,"url":null,"abstract":"We propose a new method to recognize the machine-printed monetary amount based on two-dimensional segmentation and bottom-up parsing. In conventional segmentation-based methods, the system segments the image only along the direction of the character line. This new method segments the image both horizontally and vertically, and extracts candidates of character segments correctly if there are many noises or characters are fragmented. A parsing module detects the optimal sequence of candidate segments using linguistic knowledge. In our method, a context-free grammar describes the linguistic constraints in the monetary amounts. We devised a new bottom-up parsing technique that interprets the results of character classification of the two-dimensionally segmented sub-images. We tested the validity of the new method using 1,314 images, and found that it improves the recognition accuracy significantly.","PeriodicalId":277816,"journal":{"name":"Proceedings of Sixth International Conference on Document Analysis and Recognition","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Sixth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2001.953929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a new method to recognize the machine-printed monetary amount based on two-dimensional segmentation and bottom-up parsing. In conventional segmentation-based methods, the system segments the image only along the direction of the character line. This new method segments the image both horizontally and vertically, and extracts candidates of character segments correctly if there are many noises or characters are fragmented. A parsing module detects the optimal sequence of candidate segments using linguistic knowledge. In our method, a context-free grammar describes the linguistic constraints in the monetary amounts. We devised a new bottom-up parsing technique that interprets the results of character classification of the two-dimensionally segmented sub-images. We tested the validity of the new method using 1,314 images, and found that it improves the recognition accuracy significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于二维分割和自底向上解析的机印货币数量识别方法
提出了一种基于二维分割和自底向上解析的机器印钞金额识别方法。在传统的基于分割的方法中,系统只沿着字符线的方向分割图像。该方法对图像进行水平和垂直分割,在噪声较多或字符被分割的情况下,正确提取候选字符段。解析模块使用语言知识检测候选片段的最佳序列。在我们的方法中,上下文无关的语法描述了货币数量中的语言约束。我们设计了一种新的自底向上的解析技术来解释二维分割子图像的特征分类结果。我们用1314张图像测试了新方法的有效性,发现它显著提高了识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A real-world evaluation of a generic document recognition method applied to a military form of the 19th century A feedback-based approach for segmenting handwritten legal amounts on bank cheques Accuracy improvement of handwritten numeral recognition by mirror image learning Synthetic data for Arabic OCR system development On the influence of vocabulary size and language models in unconstrained handwritten text recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1