CFRS: A Trends-Driven Collaborative Fashion Recommendation System

M. Stefani, Vassilios Stefanis, J. Garofalakis
{"title":"CFRS: A Trends-Driven Collaborative Fashion Recommendation System","authors":"M. Stefani, Vassilios Stefanis, J. Garofalakis","doi":"10.1109/IISA.2019.8900681","DOIUrl":null,"url":null,"abstract":"Fashion has a great impact in everyday life and therefore, people pay close attention to the way they dress. Fashion item recommendation is typically a manual, curated process, where experts recommend items and trends to large populations. However, there is increasing use of automated, personalized recommendation systems, which have valuable applications in e-commerce websites. In this paper, we propose a collaborative fashion recommendation system, called CFRS. Apart from classic features, we propose a new metric, called trend score. Trend score shows how trendy a product is and is calculated taking into account the ratings provided by CFRS users (fashion experts and registered users). In particular, users rate (like/ dislike scale) current trends about colors, prints and materials. Finally, trend score is used a) for sorting products of each category from trendiest options to classic ones and b) to recommend trendy products from different clothing categories.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Fashion has a great impact in everyday life and therefore, people pay close attention to the way they dress. Fashion item recommendation is typically a manual, curated process, where experts recommend items and trends to large populations. However, there is increasing use of automated, personalized recommendation systems, which have valuable applications in e-commerce websites. In this paper, we propose a collaborative fashion recommendation system, called CFRS. Apart from classic features, we propose a new metric, called trend score. Trend score shows how trendy a product is and is calculated taking into account the ratings provided by CFRS users (fashion experts and registered users). In particular, users rate (like/ dislike scale) current trends about colors, prints and materials. Finally, trend score is used a) for sorting products of each category from trendiest options to classic ones and b) to recommend trendy products from different clothing categories.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CFRS:一个趋势驱动的协同时尚推荐系统
时尚在日常生活中有很大的影响,因此,人们密切关注他们的穿着方式。时尚单品推荐通常是一个人工的、精心策划的过程,由专家向大量人群推荐单品和流行趋势。然而,越来越多的人使用自动化、个性化的推荐系统,这在电子商务网站中有很有价值的应用。在本文中,我们提出了一个协同时尚推荐系统,称为CFRS。除了经典的特征,我们提出了一个新的指标,称为趋势得分。潮流评分显示了产品的流行程度,并根据CFRS用户(时尚专家和注册用户)提供的评分来计算。特别是,用户评价(喜欢/不喜欢的比例)关于颜色、图案和材料的当前趋势。最后,trend score用于a)将每个类别的产品从最流行的选项到经典的选项进行排序,b)从不同的服装类别中推荐流行产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data Advancing Adult Online Education through a SN-Learning Environment Smart educational games and Consent under the scope of General Data Protection Regulation Timetable Scheduling Using a Hybrid Particle Swarm Optimization with Local Search Approach Data Mining for Smart Cities: Predicting Electricity Consumption by Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1