Developing Intelligent Feeding Systems based on Deep Learning

Wu-Chih Hu, Hsin-Te Wu, Jun-We Zhan, Ping-Hsin Hsieh
{"title":"Developing Intelligent Feeding Systems based on Deep Learning","authors":"Wu-Chih Hu, Hsin-Te Wu, Jun-We Zhan, Ping-Hsin Hsieh","doi":"10.1145/3440943.3444343","DOIUrl":null,"url":null,"abstract":"1The system can reduce the calculating workload of the IoT development board, as well as lowering the power consumption and guard the pool against water pollution. The intelligent feeding system offered by this study can effectively ease the workforce of the aquaculture industry. In the future, cage culture can also implement such a method to increase the safety of the operators. According to the experimental result of this study, the approach is feasible.","PeriodicalId":310247,"journal":{"name":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 ACM International Conference on Intelligent Computing and its Emerging Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440943.3444343","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

1The system can reduce the calculating workload of the IoT development board, as well as lowering the power consumption and guard the pool against water pollution. The intelligent feeding system offered by this study can effectively ease the workforce of the aquaculture industry. In the future, cage culture can also implement such a method to increase the safety of the operators. According to the experimental result of this study, the approach is feasible.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的智能喂养系统开发
1 .减少物联网开发板的计算工作量,降低功耗,保护池不受水污染。本研究提供的智能饲养系统可以有效缓解水产养殖业的劳动力问题。在未来,网箱养殖也可以实施这样的方法,以增加操作人员的安全性。实验结果表明,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Image Processing Approach for Improving the Recognition of Cluster-like Spheroidized Carbides XGBoost based Packer Identification study using Entry point Machine Learning-Based Profiling Attack Method in RSA Prime Multiplication A Classification method of Fake News based on Ensemble Learning Intelligent Controlling System in Aquaculture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1