{"title":"Co-kriging based multi-fidelity uncertainty quantification of beam vibration using coarse and fine finite element meshes","authors":"R. Rohit, R. Ganguli","doi":"10.1080/15502287.2021.1921883","DOIUrl":null,"url":null,"abstract":"Abstract Multi-fidelity models have exploded in popularity as they promise to circumvent the computational complexity of a high-fidelity model without sacrificing accuracy. In this paper, we demonstrate the process of building a multi-fidelity model and illustrate its advantage through an uncertainty quantification study using the beam vibration problem. A multi-fidelity co-kriging model is built with data from low- and high-fidelity models, which are finite element models with coarse and fine discretization, respectively. The co-kriging model’s predictive capabilities are excellent, achieving accuracy within 1% of the high-fidelity model while providing 98% computational savings over the high-fidelity model in the uncertainty quantification study.","PeriodicalId":315058,"journal":{"name":"International Journal for Computational Methods in Engineering Science and Mechanics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Computational Methods in Engineering Science and Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15502287.2021.1921883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract Multi-fidelity models have exploded in popularity as they promise to circumvent the computational complexity of a high-fidelity model without sacrificing accuracy. In this paper, we demonstrate the process of building a multi-fidelity model and illustrate its advantage through an uncertainty quantification study using the beam vibration problem. A multi-fidelity co-kriging model is built with data from low- and high-fidelity models, which are finite element models with coarse and fine discretization, respectively. The co-kriging model’s predictive capabilities are excellent, achieving accuracy within 1% of the high-fidelity model while providing 98% computational savings over the high-fidelity model in the uncertainty quantification study.