{"title":"Developable Strip Approximation of Parametric Surfaces with Global Error Bounds","authors":"Yong-Jin Liu, Yu-Kun Lai, Shimin Hu","doi":"10.1109/PG.2007.13","DOIUrl":null,"url":null,"abstract":"Developable surfaces have many desired properties in manufacturing process. Since most existing CAD systems utilize parametric surfaces as the design primitive, there is a great demand in industry to convert a parametric surface within a prescribed global error bound into developable patches. In this work we propose a simple and efficient solution to approximate a general parametric surface with a minimum set of C0-joint developable strips. The key contribution of the proposed algorithm is that, several global optimization problems are elegantly solved in a sequence that offers a controllable global error bound on the developable surface approximation. Experimental results are presented to demonstrate the effectiveness and stability of the proposed algorithm.","PeriodicalId":376934,"journal":{"name":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"15th Pacific Conference on Computer Graphics and Applications (PG'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PG.2007.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Developable surfaces have many desired properties in manufacturing process. Since most existing CAD systems utilize parametric surfaces as the design primitive, there is a great demand in industry to convert a parametric surface within a prescribed global error bound into developable patches. In this work we propose a simple and efficient solution to approximate a general parametric surface with a minimum set of C0-joint developable strips. The key contribution of the proposed algorithm is that, several global optimization problems are elegantly solved in a sequence that offers a controllable global error bound on the developable surface approximation. Experimental results are presented to demonstrate the effectiveness and stability of the proposed algorithm.