A privacy protection procedure for large scale individual level data

Julius Adebayo, Lalana Kagal
{"title":"A privacy protection procedure for large scale individual level data","authors":"Julius Adebayo, Lalana Kagal","doi":"10.1109/ISI.2015.7165950","DOIUrl":null,"url":null,"abstract":"We present a transformation procedure for large scale individual level data that produces output data in which no linear combinations of the resulting attributes can yield the original sensitive attributes from the transformed data. In doing this, our procedure eliminates all linear information regarding a sensitive attribute from the input data. The algorithm combines principal components analysis of the data set with orthogonal projection onto the subspace containing the sensitive attribute(s). The algorithm presented is motivated by applications where there is a need to drastically `sanitize' a data set of all information relating to sensitive attribute(s) before analysis of the data using a data mining algorithm. Sensitive attribute removal (sanitization) is often needed to prevent disparate impact and discrimination on the basis of race, gender, and sexual orientation in high stakes contexts such as determination of access to loans, credit, employment, and insurance. We show through experiments that our proposed algorithm outperforms other privacy preserving techniques by more than 20 percent in lowering the ability to reconstruct sensitive attributes from large scale data.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We present a transformation procedure for large scale individual level data that produces output data in which no linear combinations of the resulting attributes can yield the original sensitive attributes from the transformed data. In doing this, our procedure eliminates all linear information regarding a sensitive attribute from the input data. The algorithm combines principal components analysis of the data set with orthogonal projection onto the subspace containing the sensitive attribute(s). The algorithm presented is motivated by applications where there is a need to drastically `sanitize' a data set of all information relating to sensitive attribute(s) before analysis of the data using a data mining algorithm. Sensitive attribute removal (sanitization) is often needed to prevent disparate impact and discrimination on the basis of race, gender, and sexual orientation in high stakes contexts such as determination of access to loans, credit, employment, and insurance. We show through experiments that our proposed algorithm outperforms other privacy preserving techniques by more than 20 percent in lowering the ability to reconstruct sensitive attributes from large scale data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模个人数据的隐私保护程序
我们提出了一种大规模个人级数据的转换过程,该过程产生的输出数据中,结果属性的线性组合不能从转换后的数据中产生原始敏感属性。在这样做的过程中,我们的过程从输入数据中消除了关于敏感属性的所有线性信息。该算法将数据集的主成分分析与在包含敏感属性的子空间上的正交投影相结合。在使用数据挖掘算法分析数据之前,需要彻底“净化”与敏感属性相关的所有信息的数据集的应用程序激发了本文提出的算法。在高风险环境中,如确定获得贷款、信贷、就业和保险的机会,通常需要去除敏感属性(消毒),以防止基于种族、性别和性取向的不同影响和歧视。我们通过实验表明,我们提出的算法在降低从大规模数据重建敏感属性的能力方面优于其他隐私保护技术20%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1