Integrating syllabus data into student success models

Josh Gardner, Ogechi Onuoha, Christopher A. Brooks
{"title":"Integrating syllabus data into student success models","authors":"Josh Gardner, Ogechi Onuoha, Christopher A. Brooks","doi":"10.1145/3027385.3029473","DOIUrl":null,"url":null,"abstract":"In this work, we present (1) a methodology for collecting, evaluating, and utilizing human-annotated data about course syllabi in predictive models of student success, and (2) an empirical analysis of the predictiveness of such features as they relate to others in modeling end-of-course grades in traditional higher education courses. We present a two-stage approach to (1) that addresses several challenges unique to the annotation task, and address (2) using variable importance metrics from a series of exploratory models. We demonstrate that the process of supplementing traditional course data with human-annotated data can potentially improve predictive models with information not contained in university records, and highlight specific features that demonstrate these potential information gains.","PeriodicalId":160897,"journal":{"name":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Seventh International Learning Analytics & Knowledge Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3027385.3029473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we present (1) a methodology for collecting, evaluating, and utilizing human-annotated data about course syllabi in predictive models of student success, and (2) an empirical analysis of the predictiveness of such features as they relate to others in modeling end-of-course grades in traditional higher education courses. We present a two-stage approach to (1) that addresses several challenges unique to the annotation task, and address (2) using variable importance metrics from a series of exploratory models. We demonstrate that the process of supplementing traditional course data with human-annotated data can potentially improve predictive models with information not contained in university records, and highlight specific features that demonstrate these potential information gains.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将教学大纲数据整合到学生成功模型中
在这项工作中,我们提出了(1)在学生成功的预测模型中收集、评估和利用关于课程教学大纲的人工注释数据的方法,以及(2)在传统高等教育课程的课程结束成绩建模中,对这些特征与其他特征相关的预测性进行实证分析。我们提出了一种两阶段的方法来解决(1)注释任务所特有的几个挑战,并解决(2)使用来自一系列探索性模型的可变重要性指标。我们证明了用人工注释的数据补充传统课程数据的过程可以潜在地改进包含大学记录中未包含信息的预测模型,并突出了展示这些潜在信息收益的特定特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An information policy perspective on learning analytics When learning is high stake How can we accelerate dissemination of knowledge and learning?: developing an online knowledge management platform for networked improvement communities LAK17 hackathon: getting the right information to the right people so they can take the right action Strategies for data and learning analytics informed national education policies: the case of Uruguay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1