RL-BLH: Learning-Based Battery Control for Cost Savings and Privacy Preservation for Smart Meters

Jinkyu Koo, Xiaojun Lin, S. Bagchi
{"title":"RL-BLH: Learning-Based Battery Control for Cost Savings and Privacy Preservation for Smart Meters","authors":"Jinkyu Koo, Xiaojun Lin, S. Bagchi","doi":"10.1109/DSN.2017.16","DOIUrl":null,"url":null,"abstract":"An emerging solution to privacy issues in smart grids is battery-based load hiding (BLH) that uses a rechargeable battery to decouple the meter readings from user activities. However, existing BLH algorithms have two significant limitations: (1) Most of them focus on flattening high-frequency variation of usage profile only, thereby still revealing a low-frequency shape, (2) Otherwise, they assume to know a statistical model of usage pattern. To overcome these limitations, we propose a new BLH algorithm, named RL-BLH. The RL-BLH hides both low-frequency and high-frequency usage patterns by shaping the meter readings to rectangular pulses. The RL-BLH learns a decision policy for choosing pulse magnitudes on the fly without prior knowledge of usage pattern. The decision policy is designed to charge and discharge the battery in the optimal way to maximize cost savings. We also provide heuristics to shorten learning time and improve cost savings.","PeriodicalId":426928,"journal":{"name":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSN.2017.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

An emerging solution to privacy issues in smart grids is battery-based load hiding (BLH) that uses a rechargeable battery to decouple the meter readings from user activities. However, existing BLH algorithms have two significant limitations: (1) Most of them focus on flattening high-frequency variation of usage profile only, thereby still revealing a low-frequency shape, (2) Otherwise, they assume to know a statistical model of usage pattern. To overcome these limitations, we propose a new BLH algorithm, named RL-BLH. The RL-BLH hides both low-frequency and high-frequency usage patterns by shaping the meter readings to rectangular pulses. The RL-BLH learns a decision policy for choosing pulse magnitudes on the fly without prior knowledge of usage pattern. The decision policy is designed to charge and discharge the battery in the optimal way to maximize cost savings. We also provide heuristics to shorten learning time and improve cost savings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RL-BLH:基于学习的智能电表成本节约和隐私保护电池控制
针对智能电网的隐私问题,一种新兴的解决方案是基于电池的负载隐藏(BLH),它使用可充电电池将电表读数与用户活动分离。然而,现有的BLH算法存在两个明显的局限性:(1)大多数算法只关注使用曲线的高频变化,从而仍然显示低频形状;(2)否则,它们假设知道使用模式的统计模型。为了克服这些限制,我们提出了一种新的BLH算法,命名为RL-BLH。RL-BLH通过将仪表读数塑造成矩形脉冲来隐藏低频和高频使用模式。RL-BLH在不事先了解使用模式的情况下学习动态选择脉冲幅度的决策策略。该决策策略旨在以最优方式对电池进行充放电,以最大限度地节省成本。我们还提供启发式方法来缩短学习时间和提高成本节约。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromising Security of Economic Dispatch in Power System Operations Implicit Smartphone User Authentication with Sensors and Contextual Machine Learning Towards Automated Discovery of Crash-Resistant Primitives in Binary Executables Sensor-Based Implicit Authentication of Smartphone Users Athena: A Framework for Scalable Anomaly Detection in Software-Defined Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1