FEISI: Towards Enterprise Information Semantic Integration

X. Pang, De-yu Qi, Yong Jun Li
{"title":"FEISI: Towards Enterprise Information Semantic Integration","authors":"X. Pang, De-yu Qi, Yong Jun Li","doi":"10.1109/APSCC.2006.54","DOIUrl":null,"url":null,"abstract":"Nowadays, Enterprise Information Semantic Integration (EISI) constitutes a real and growing need for most large enterprises, The main problem of EISI is the heterogeneity problem, especially the semantic integration. Current solutions mainly focus on structural and syntactical integration, and the solutions for semantic integration are still immature. In this paper, we introduce a novel FuseGrid-based EISI architecture named FEISI which can achieve dynamic, adaptive and semantic integration of enterprise information resources by organizing, sharing and fusing the information of enterprise. The key issues of FEISI are ontology building and query rewriting, we analyses the organization of ontology and describes a multi-level tree-based ontology structure for the former, for the latter, we show the key algorithm of FEISI. The aim of our approach is to correctly capture, structure and also to manage the semantics within large, dynamic and multidisciplinary enterprises especially enterprise groups.","PeriodicalId":437766,"journal":{"name":"IEEE Asia-Pacific Services Computing Conference","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Asia-Pacific Services Computing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSCC.2006.54","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, Enterprise Information Semantic Integration (EISI) constitutes a real and growing need for most large enterprises, The main problem of EISI is the heterogeneity problem, especially the semantic integration. Current solutions mainly focus on structural and syntactical integration, and the solutions for semantic integration are still immature. In this paper, we introduce a novel FuseGrid-based EISI architecture named FEISI which can achieve dynamic, adaptive and semantic integration of enterprise information resources by organizing, sharing and fusing the information of enterprise. The key issues of FEISI are ontology building and query rewriting, we analyses the organization of ontology and describes a multi-level tree-based ontology structure for the former, for the latter, we show the key algorithm of FEISI. The aim of our approach is to correctly capture, structure and also to manage the semantics within large, dynamic and multidisciplinary enterprises especially enterprise groups.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向企业信息语义集成
目前,企业信息语义集成已成为大多数大型企业日益迫切的需求,而企业信息语义集成的主要问题是异构性问题,尤其是语义集成问题。目前的解决方案主要集中在结构和句法集成上,语义集成的解决方案还不成熟。本文提出了一种新的基于fusegrid的企业信息集成体系结构FEISI,通过对企业信息的组织、共享和融合,实现企业信息资源的动态、自适应和语义集成。本文对本体的组织结构进行了分析,描述了基于多级树的本体结构,并给出了基于多级树的本体结构的关键算法。我们的方法的目的是正确地捕获、组织和管理大型、动态和多学科企业(尤其是企业集团)中的语义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Game Theory Based Interference Control Approach in 5G Ultra-Dense Heterogeneous Networks A Density Peak Cluster Model of High-Dimensional Data DHMRF: A Dynamic Hybrid Movie Recommender Framework A Fast Adaptive Frequency Hopping Scheme Mitigating the Effect of Interference in Bluetooth Low Energy Networks An Unsupervised Method for Linking Entity Mentions in Chinese Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1