Efficient mapping algorithms for survivable GMPLS networks

P. Laborczi
{"title":"Efficient mapping algorithms for survivable GMPLS networks","authors":"P. Laborczi","doi":"10.1117/12.533324","DOIUrl":null,"url":null,"abstract":"With the advent of intelligent IP over optical networks, like GMPLS, connections can be protected against failures effectively; however, to capitalize the advantages, novel sophisticated methods are needed. This paper addresses the task of finding efficient mapping in a survivable multilayer network in order to ensure high availability for connections. Known methods (like running a shortest path algorithm) do not consider finding physically disjoint paths in the upper layer and thus cause failure propagation. Besides formulating the problem, we propose a randomized heuristic method to solve it. The quality of the solution is evaluated (1) by the number of node-pairs for which physically-disjoint path-pair can be found in the upper layer, or (2) by the number of spans used by both working and protection paths (i.e., failure propagation effect). It is shown with numerous simulations that our proposed method finds solution for significantly more node pairs (86% instead of 45% in the 35-node network) than traditional methods. Furthermore, it yields connection availabilities near to the optimum.","PeriodicalId":187370,"journal":{"name":"OptiComm: Optical Networking and Communications Conference","volume":"5285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OptiComm: Optical Networking and Communications Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.533324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

With the advent of intelligent IP over optical networks, like GMPLS, connections can be protected against failures effectively; however, to capitalize the advantages, novel sophisticated methods are needed. This paper addresses the task of finding efficient mapping in a survivable multilayer network in order to ensure high availability for connections. Known methods (like running a shortest path algorithm) do not consider finding physically disjoint paths in the upper layer and thus cause failure propagation. Besides formulating the problem, we propose a randomized heuristic method to solve it. The quality of the solution is evaluated (1) by the number of node-pairs for which physically-disjoint path-pair can be found in the upper layer, or (2) by the number of spans used by both working and protection paths (i.e., failure propagation effect). It is shown with numerous simulations that our proposed method finds solution for significantly more node pairs (86% instead of 45% in the 35-node network) than traditional methods. Furthermore, it yields connection availabilities near to the optimum.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可生存GMPLS网络的有效映射算法
随着智能IP光网络的出现,如GMPLS,连接可以有效地防止故障;然而,为了充分利用这些优势,需要新颖复杂的方法。本文研究如何在可生存的多层网络中找到有效的映射,以保证连接的高可用性。已知的方法(如运行最短路径算法)没有考虑在上层寻找物理上不相交的路径,从而导致故障传播。除了提出问题外,我们还提出了一种随机启发式方法来解决问题。解决方案的质量是通过(1)在上层可以找到物理不相交的路径对的节点对的数量来评估的,或者(2)工作路径和保护路径使用的跨度的数量来评估的(即,故障传播效应)。大量的仿真表明,与传统方法相比,我们提出的方法可以找到更多的节点对(在35节点网络中为86%而不是45%)的解。此外,它产生的连接可用性接近最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A hybrid protection-restoration mechanism for enhancing dual-failure restorability in optical mesh-restorable networks Overspill routing in optical networks: a new architecture for future-proof IP-over-WDM networks Grooming of multicast sessions in WDM ring networks Dynamic bandwidth allocation algorithms in EPON: a simulation study CHEETAH: circuit-switched high-speed end-to-end transport architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1