Alignment of growth seasons from satellite data

R. B. Huseby, L. Aurdal, L. Eikvil, R. Solberg, D. Vikhamar, A. Solberg
{"title":"Alignment of growth seasons from satellite data","authors":"R. B. Huseby, L. Aurdal, L. Eikvil, R. Solberg, D. Vikhamar, A. Solberg","doi":"10.1109/AMTRSI.2005.1469875","DOIUrl":null,"url":null,"abstract":"This work concerns the alignment of growth seasons based on satellite data. This work is motivated by a high mountain vegetation classification problem in Norway. Vegetation classes are characterized by their temporal evolution through a growth season. Data of high spatial resolution, like LANDSAT data, are often temporally sparse. In order to get a longer sequence of images, data from different years can be combined into one single synthetic sequence. We describe a method for determining the correspondence between the chronological time of the image acquisition and the time at which the phenological state of the vegetation cover shown in the image would typically occur. The task is considered as a minimization problem and is solved by dynamic programming. The methodology is based on the normalized difference vegetation index (NDVI) computed from data having a coarse spatial resolution such as MODIS or AVHRR data. The proposed methodology has been tested on data from several years covering a region in Norway including mountainous areas. It is evident from plots of the original data that NDVI curves from different seasons are shifted relative to one another. By applying the proposed time warping methodology to adjust the time scale within each year the shifts become less apparent. We conclude that the methodology can be used for alignment of growth seasons from satellite data.","PeriodicalId":302923,"journal":{"name":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMTRSI.2005.1469875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This work concerns the alignment of growth seasons based on satellite data. This work is motivated by a high mountain vegetation classification problem in Norway. Vegetation classes are characterized by their temporal evolution through a growth season. Data of high spatial resolution, like LANDSAT data, are often temporally sparse. In order to get a longer sequence of images, data from different years can be combined into one single synthetic sequence. We describe a method for determining the correspondence between the chronological time of the image acquisition and the time at which the phenological state of the vegetation cover shown in the image would typically occur. The task is considered as a minimization problem and is solved by dynamic programming. The methodology is based on the normalized difference vegetation index (NDVI) computed from data having a coarse spatial resolution such as MODIS or AVHRR data. The proposed methodology has been tested on data from several years covering a region in Norway including mountainous areas. It is evident from plots of the original data that NDVI curves from different seasons are shifted relative to one another. By applying the proposed time warping methodology to adjust the time scale within each year the shifts become less apparent. We conclude that the methodology can be used for alignment of growth seasons from satellite data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
根据卫星数据调整生长季节
这项工作涉及基于卫星数据的生长季节对齐。这项工作的动机是在挪威的高山植被分类问题。植被分类的特征是它们在一个生长季节中的时间演变。高空间分辨率的数据,如LANDSAT数据,在时间上往往是稀疏的。为了获得更长的图像序列,可以将不同年份的数据合并成一个合成序列。我们描述了一种方法,用于确定图像采集的时间顺序与图像中显示的植被物候状态通常发生的时间之间的对应关系。将该任务视为最小化问题,并采用动态规划方法进行求解。该方法基于归一化植被指数(NDVI),该指数由MODIS或AVHRR数据等具有粗空间分辨率的数据计算得出。提议的方法已在挪威一个地区(包括山区)的数年数据上进行了测试。从原始资料的图中可以明显看出,不同季节的NDVI曲线是相对移位的。通过应用所提出的时间扭曲方法来调整每年的时间尺度,这种变化变得不那么明显。我们得出的结论是,该方法可用于从卫星数据中调整生长季节。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A mined sand dune revegetation sequence in Myall Lakes, N.S.W., Australia Temporal signatures and harmonic analysis of natural and anthropogenic disturbances of forested landscapes: a case study in the Yellowstone region Development of indicators of burning efficiency based on time series of SPOT VEGETATION data Multitemporal analysis of NDVI and land surface temperature for modeling the probability of forest fire occurrence in central Mexico Post-classification digital change detection analysis of a temperate forest in the southwest basin of Mexico City, in a 16-year span
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1