Attributes-oriented clothing description and retrieval with multi-task convolutional neural network

Y. Xia, Baitong Chen, Wenjin Lu, Frans Coenen, Bailing Zhang
{"title":"Attributes-oriented clothing description and retrieval with multi-task convolutional neural network","authors":"Y. Xia, Baitong Chen, Wenjin Lu, Frans Coenen, Bailing Zhang","doi":"10.1109/FSKD.2017.8393378","DOIUrl":null,"url":null,"abstract":"This paper seek answer to question how to search clothing when consumer pays attention to a part of clothing. A novel framework is proposed to solve above problem by attributes. First of all, Fast-RCNN detects person from complex background. Then a Convolutional Neural Network (CNN) is combined with Multi-Task Learning (MTL) to extract features related to attributes. Next Principal Component Analysis (PCA) reduce dimensionality of feature from CNN. Finally, Locality Sensitive Hashing (LSH) searches similar samples in the gallery. Extensive experiments were done on the clothing attribute dataset, experimental results proves this framework is effective.","PeriodicalId":236093,"journal":{"name":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2017.8393378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper seek answer to question how to search clothing when consumer pays attention to a part of clothing. A novel framework is proposed to solve above problem by attributes. First of all, Fast-RCNN detects person from complex background. Then a Convolutional Neural Network (CNN) is combined with Multi-Task Learning (MTL) to extract features related to attributes. Next Principal Component Analysis (PCA) reduce dimensionality of feature from CNN. Finally, Locality Sensitive Hashing (LSH) searches similar samples in the gallery. Extensive experiments were done on the clothing attribute dataset, experimental results proves this framework is effective.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多任务卷积神经网络的服装属性描述与检索
本文试图回答消费者在关注服装的某一部分时如何搜索服装的问题。提出了一种新的基于属性的框架来解决上述问题。首先,Fast-RCNN从复杂的背景中识别人。然后将卷积神经网络(CNN)与多任务学习(MTL)相结合,提取与属性相关的特征。其次,主成分分析(PCA)对CNN的特征进行降维。最后,局部敏感散列(LSH)在库中搜索相似的样本。在服装属性数据集上进行了大量的实验,实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Space syntax and time distance based analysis on the influences of the subways to the pubic traffic accessibility in Nanchang city Designing fuzzy apparatus to model dyslexic individual symptoms for clinical use A kNN classifier optimized by P systems Research on optimal operation of cascade hydropower station based on improved biogeography-based optimization algorithm An estimation algorithm of time-varying channels in the OFDM communication system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1