{"title":"Detection of Violent Extremists in Social Media","authors":"Hamidreza Alvari, Soumajyoti Sarkar, P. Shakarian","doi":"10.1109/ICDIS.2019.00014","DOIUrl":null,"url":null,"abstract":"The ease of use of the Internet has enabled violent extremists such as the Islamic State of Iraq and Syria (ISIS) to easily reach large audience, build personal relationships and increase recruitment. Social media are primarily based on the reports they receive from their own users to mitigate the problem. Despite efforts of social media in suspending many accounts, this solution is not guaranteed to be effective, because not all extremists are caught this way, or they can simply return with another account or migrate to other social networks. In this paper, we design an automatic detection scheme that using as little as three groups of information related to usernames, profile, and textual content of users, determines whether or not a given username belongs to an extremist user. We first demonstrate that extremists are inclined to adopt usernames that are similar to the ones that their like-minded have adopted in the past. We then propose a detection framework that deploys features which are highly indicative of potential online extremism. Results on a real-world ISIS-related dataset from Twitter demonstrate the effectiveness of the methodology in identifying extremist users.","PeriodicalId":181673,"journal":{"name":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 2nd International Conference on Data Intelligence and Security (ICDIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIS.2019.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
The ease of use of the Internet has enabled violent extremists such as the Islamic State of Iraq and Syria (ISIS) to easily reach large audience, build personal relationships and increase recruitment. Social media are primarily based on the reports they receive from their own users to mitigate the problem. Despite efforts of social media in suspending many accounts, this solution is not guaranteed to be effective, because not all extremists are caught this way, or they can simply return with another account or migrate to other social networks. In this paper, we design an automatic detection scheme that using as little as three groups of information related to usernames, profile, and textual content of users, determines whether or not a given username belongs to an extremist user. We first demonstrate that extremists are inclined to adopt usernames that are similar to the ones that their like-minded have adopted in the past. We then propose a detection framework that deploys features which are highly indicative of potential online extremism. Results on a real-world ISIS-related dataset from Twitter demonstrate the effectiveness of the methodology in identifying extremist users.