Mobile Network Slicing under Demand Uncertainty: A Stochastic Programming Approach

Anousheh Gholami, Nariman Torkzaban, J. Baras
{"title":"Mobile Network Slicing under Demand Uncertainty: A Stochastic Programming Approach","authors":"Anousheh Gholami, Nariman Torkzaban, J. Baras","doi":"10.1109/NetSoft57336.2023.10175453","DOIUrl":null,"url":null,"abstract":"Constant temporospatial variations in the user demand complicate the end-to-end (E2E) network slice (NS) resource provisioning beyond the limits of the existing best-effort schemes that are only effective under accurate demand forecasts for all NSs. This paper proposes a practical two-time-scale resource allocation framework for E2E network slicing under demand uncertainty. At each macro-scale instance, we assume that only the spatial probability distribution of the NS demands is available. We formulate the NSs resource allocation problem as a stochastic mixed integer program (SMIP) with the objective of minimizing the total CN and RAN resource costs. At each microscale instance, given the exact NSs demand profiles known at operation time, a linear program is solved to jointly minimize the unsupported traffic and RAN cost. We verify the effectiveness of our resource allocation scheme through numerical experiments.","PeriodicalId":223208,"journal":{"name":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 9th International Conference on Network Softwarization (NetSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NetSoft57336.2023.10175453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Constant temporospatial variations in the user demand complicate the end-to-end (E2E) network slice (NS) resource provisioning beyond the limits of the existing best-effort schemes that are only effective under accurate demand forecasts for all NSs. This paper proposes a practical two-time-scale resource allocation framework for E2E network slicing under demand uncertainty. At each macro-scale instance, we assume that only the spatial probability distribution of the NS demands is available. We formulate the NSs resource allocation problem as a stochastic mixed integer program (SMIP) with the objective of minimizing the total CN and RAN resource costs. At each microscale instance, given the exact NSs demand profiles known at operation time, a linear program is solved to jointly minimize the unsupported traffic and RAN cost. We verify the effectiveness of our resource allocation scheme through numerical experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
需求不确定性下的移动网络切片:一种随机规划方法
用户需求的不断时空变化使端到端网络片(NS)资源供应复杂化,超出了现有的最佳努力方案的限制,这些方案只有在对所有网络片的准确需求预测下才有效。提出了一种实用的需求不确定情况下端到端网络切片双时间尺度资源分配框架。在每个宏观尺度实例中,我们假设只有NS需求的空间概率分布是可用的。我们将NSs资源分配问题表述为一个随机混合整数规划(SMIP),其目标是最小化CN和RAN的总资源成本。在每个微尺度实例中,给定运行时确切的NSs需求曲线,求解线性程序以共同最小化不支持的流量和RAN成本。通过数值实验验证了资源分配方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autonomous Network Management in Multi-Domain 6G Networks based on Graph Neural Networks Showcasing In-Switch Machine Learning Inference Latency-Aware Kubernetes Scheduling for Microservices Orchestration at the Edge DRL-based Service Migration for MEC Cloud-Native 5G and beyond Networks Hierarchical Control Plane Framework for Multi-Domain TSN Orchestration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1