Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan
{"title":"Image Denoising with Nonparametric Hidden Markov Trees","authors":"Jyri J. Kivinen, Erik B. Sudderth, Michael I. Jordan","doi":"10.1109/ICIP.2007.4379261","DOIUrl":null,"url":null,"abstract":"We develop a hierarchical, nonparametric statistical model for wavelet representations of natural images. Extending previous work on Gaussian scale mixtures, wavelet coefficients are marginally distributed according to infinite, Dirichlet process mixtures. A hidden Markov tree is then used to couple the mixture assignments at neighboring nodes. Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet process hidden Markov tree (HDP-HMT) model automatically adapts to the complexity of different images and wavelet bases. Image denoising results demonstrate the effectiveness of this learning process.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
We develop a hierarchical, nonparametric statistical model for wavelet representations of natural images. Extending previous work on Gaussian scale mixtures, wavelet coefficients are marginally distributed according to infinite, Dirichlet process mixtures. A hidden Markov tree is then used to couple the mixture assignments at neighboring nodes. Via a Monte Carlo learning algorithm, the resulting hierarchical Dirichlet process hidden Markov tree (HDP-HMT) model automatically adapts to the complexity of different images and wavelet bases. Image denoising results demonstrate the effectiveness of this learning process.