Full Model Selection issue in temporal data through evolutionary algorithms: A brief review

N. Pérez-Castro, Aldo Márquez-Grajales, H. Acosta-Mesa, E. Mezura-Montes
{"title":"Full Model Selection issue in temporal data through evolutionary algorithms: A brief review","authors":"N. Pérez-Castro, Aldo Márquez-Grajales, H. Acosta-Mesa, E. Mezura-Montes","doi":"10.1109/CEC.2017.7969602","DOIUrl":null,"url":null,"abstract":"In this article, a brief literature review of Full Model Selection (FMS) for temporal data is presented. An analysis of FMS approaches which use evolutionary algorithms to exploit and explore the vast search space found in this kind of problem is presented. The primary motivation of this review is to highlight the scarce published works of FMS in temporal databases. Moreover, a taxonomy for the tasks derived of FMS is proposed and chosen to discuss the different revised approaches. Also, the most representative assessment measures for model selection are described. From the literature review, a set of opportunities and challenges research is presented in the temporal FMS area.","PeriodicalId":335123,"journal":{"name":"2017 IEEE Congress on Evolutionary Computation (CEC)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2017.7969602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, a brief literature review of Full Model Selection (FMS) for temporal data is presented. An analysis of FMS approaches which use evolutionary algorithms to exploit and explore the vast search space found in this kind of problem is presented. The primary motivation of this review is to highlight the scarce published works of FMS in temporal databases. Moreover, a taxonomy for the tasks derived of FMS is proposed and chosen to discuss the different revised approaches. Also, the most representative assessment measures for model selection are described. From the literature review, a set of opportunities and challenges research is presented in the temporal FMS area.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过进化算法的时间数据的全模型选择问题:简要回顾
在本文中,简要回顾了全模型选择(FMS)的时间数据。分析了利用进化算法开发和探索这类问题的巨大搜索空间的FMS方法。这篇综述的主要动机是突出在时间数据库中发表的FMS的稀缺作品。此外,本文还对FMS衍生的任务进行了分类,并对不同的修正方法进行了讨论。描述了模型选择中最具代表性的评估方法。从文献综述来看,时间FMS领域的研究面临着一系列机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Knowledge-based particle swarm optimization for PID controller tuning Local Optima Networks of the Permutation Flowshop Scheduling Problem: Makespan vs. total flow time Information core optimization using Evolutionary Algorithm with Elite Population in recommender systems New heuristics for multi-objective worst-case optimization in evidence-based robust design Bus Routing for emergency evacuations: The case of the Great Fire of Valparaiso
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1