A Machine Learning Based Plagiarism Detection in Source Code

N. Viuginov, P. Grachev, A. Filchenkov
{"title":"A Machine Learning Based Plagiarism Detection in Source Code","authors":"N. Viuginov, P. Grachev, A. Filchenkov","doi":"10.1145/3446132.3446420","DOIUrl":null,"url":null,"abstract":"Converting source codes to feature vectors can be useful in programming-related tasks, such as plagiarism detection on ACM contests. We present a brand-new method for feature extraction from C++ files, which includes both features describing syntactic and lexical properties of an AST tree and features characterizing disassembly of source code. We propose a method for solving the plagiarism detection task as a classification problem. We prove the effectiveness of our feature set by testing on a dataset that contains 50 ACM problems and ∼90k solutions for them. Trained xgboost model gets a relative binary f1-score=0.745 on the test set.","PeriodicalId":125388,"journal":{"name":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2020 3rd International Conference on Algorithms, Computing and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3446132.3446420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Converting source codes to feature vectors can be useful in programming-related tasks, such as plagiarism detection on ACM contests. We present a brand-new method for feature extraction from C++ files, which includes both features describing syntactic and lexical properties of an AST tree and features characterizing disassembly of source code. We propose a method for solving the plagiarism detection task as a classification problem. We prove the effectiveness of our feature set by testing on a dataset that contains 50 ACM problems and ∼90k solutions for them. Trained xgboost model gets a relative binary f1-score=0.745 on the test set.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的源代码抄袭检测
将源代码转换为特征向量在编程相关任务中很有用,例如ACM竞赛的剽窃检测。本文提出了一种从c++文件中提取特征的新方法,该方法既包括描述AST树的语法和词法属性的特征,也包括描述源代码反汇编的特征。我们提出了一种将抄袭检测任务作为分类问题来解决的方法。我们通过在包含50个ACM问题和约90k个解决方案的数据集上测试来证明我们的特征集的有效性。训练后的xgboost模型在测试集中得到一个相对二进制f1-score=0.745。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Lane Detection Combining Details and Integrity: an Advanced Method for Lane Detection The Cat's Eye Effect Target Recognition Method Based on deep convolutional neural network Leveraging Different Context for Response Generation through Topic-guided Multi-head Attention Siamese Multiplicative LSTM for Semantic Text Similarity Multi-constrained Vehicle Routing Problem Solution based on Adaptive Genetic Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1