Fast multi-view face alignment via multi-task auto-encoders

Qi Li, Zhenan Sun, R. He
{"title":"Fast multi-view face alignment via multi-task auto-encoders","authors":"Qi Li, Zhenan Sun, R. He","doi":"10.1109/BTAS.2017.8272740","DOIUrl":null,"url":null,"abstract":"Face alignment is an important problem in computer vision. It is still an open problem due to the variations of facial attributes (e.g., head pose, facial expression, illumination variation). Many studies have shown that face alignment and facial attribute analysis are often correlated. This paper develops a two-stage multi-task Auto-encoders framework for fast face alignment by incorporating head pose information to handle large view variations. In the first and second stages, multi-task Auto-encoders are used to roughly locate and further refine facial landmark locations with related pose information, respectively. Besides, the shape constraint is naturally encoded into our two-stage face alignment framework to preserve facial structures. A coarse-to-fine strategy is adopted to refine the facial landmark results with the shape constraint. Furthermore, the computational cost of our method is much lower than its deep learning competitors. Experimental results on various challenging datasets show the effectiveness of the proposed method.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Face alignment is an important problem in computer vision. It is still an open problem due to the variations of facial attributes (e.g., head pose, facial expression, illumination variation). Many studies have shown that face alignment and facial attribute analysis are often correlated. This paper develops a two-stage multi-task Auto-encoders framework for fast face alignment by incorporating head pose information to handle large view variations. In the first and second stages, multi-task Auto-encoders are used to roughly locate and further refine facial landmark locations with related pose information, respectively. Besides, the shape constraint is naturally encoded into our two-stage face alignment framework to preserve facial structures. A coarse-to-fine strategy is adopted to refine the facial landmark results with the shape constraint. Furthermore, the computational cost of our method is much lower than its deep learning competitors. Experimental results on various challenging datasets show the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多任务自动编码器快速多视图面部对齐
人脸对齐是计算机视觉中的一个重要问题。由于面部属性的变化(例如,头部姿势,面部表情,光照变化),这仍然是一个开放的问题。许多研究表明,面部对齐与面部属性分析经常是相关的。本文开发了一种两阶段多任务自动编码器框架,通过结合头部姿态信息来处理大的视图变化,实现了快速的人脸对齐。在第一阶段和第二阶段,分别使用多任务自编码器对面部地标位置进行粗略定位和进一步细化。此外,形状约束被自然地编码到我们的两阶段面部对齐框架中,以保持面部结构。采用从粗到精的策略,在形状约束下对人脸标记结果进行细化。此外,我们的方法的计算成本远低于其深度学习竞争对手。在各种具有挑战性的数据集上的实验结果表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1