{"title":"A supervisory fuzzy neural network controller for slider-crank mechanism","authors":"F. Lin, R. Fung, H. Lin, Chih-Ming Hong","doi":"10.1109/CCA.1999.801229","DOIUrl":null,"url":null,"abstract":"A supervisory fuzzy neural network (FNN) controller is proposed to control a nonlinear slider-crank mechanism in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive coupled with a slider-crank mechanism and a supervisory FNN position controller. The supervisory FNN controller comprises a sliding mode FNN controller and a supervisory controller. The sliding mode FNN controller combines the advantages of the sliding mode control with robust characteristics and the FNN with online learning ability. The supervisory controller is designed to stabilize the system states around a defined bound region. The theoretical and stability analyses of the supervisory FNN controller are discussed in detail. Simulation and experimental results are provided to show that the proposed control system is robust with regard to plant parameter variations and external load disturbance.","PeriodicalId":325193,"journal":{"name":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.1999.801229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
A supervisory fuzzy neural network (FNN) controller is proposed to control a nonlinear slider-crank mechanism in this study. The control system is composed of a permanent magnet (PM) synchronous servo motor drive coupled with a slider-crank mechanism and a supervisory FNN position controller. The supervisory FNN controller comprises a sliding mode FNN controller and a supervisory controller. The sliding mode FNN controller combines the advantages of the sliding mode control with robust characteristics and the FNN with online learning ability. The supervisory controller is designed to stabilize the system states around a defined bound region. The theoretical and stability analyses of the supervisory FNN controller are discussed in detail. Simulation and experimental results are provided to show that the proposed control system is robust with regard to plant parameter variations and external load disturbance.