On the Smoothing of Deep Networks

Vincent Roulet, Zaïd Harchaoui
{"title":"On the Smoothing of Deep Networks","authors":"Vincent Roulet, Zaïd Harchaoui","doi":"10.1109/CISS50987.2021.9400285","DOIUrl":null,"url":null,"abstract":"Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Many popular deep neural networks implement an input-output mapping that is non-smooth with respect to the network parameters. This non-smoothness may have contributed to the difficulty of analyzing deep learning theoretically. Sophisticated approaches have recently been proposed to address this specific difficulty. In this note, we explore a simple approach consisting instead in smoothing the input-output mapping. We show how to perform smoothing automatically within a differentiable programming framework. The impact of the smoothing on the convergence behavior can then be automatically controlled. We illustrate our approach with numerical examples using multilayer perceptrons.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
关于深度网络的平滑
许多流行的深度神经网络实现的输入-输出映射对于网络参数来说是非光滑的。这种不平滑性可能增加了从理论上分析深度学习的难度。最近提出了一些复杂的方法来解决这一具体困难。在本文中,我们将探索一种简单的方法,即平滑输入-输出映射。我们展示了如何在可微规划框架内自动执行平滑。然后可以自动控制平滑对收敛行为的影响。我们用多层感知器的数值例子来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quantitative Analysis System for Bacterial Cells in SEM Image using Deep Learning Using Rényi-divergence and Arimoto-Rényi Information to Quantify Membership Information Leakage Distributed Mirror Descent with Integral Feedback: Convergence Analysis from a Dynamical System Perspective Enhanced Determination of Gene Groups Based on Optimal Kernel PCA with Hierarchical Clustering Algorithm AoI-Driven Statistical Delay and Error-Rate Bounded QoS Provisioning for URLLC in the Finite Blocklength Regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1