A Generative Probabilistic Model for Multi-label Classification

Hongning Wang, Minlie Huang, Xiaoyan Zhu
{"title":"A Generative Probabilistic Model for Multi-label Classification","authors":"Hongning Wang, Minlie Huang, Xiaoyan Zhu","doi":"10.1109/ICDM.2008.86","DOIUrl":null,"url":null,"abstract":"Traditional discriminative classification method makes little attempt to reveal the probabilistic structure and the correlation within both input and output spaces. In the scenario of multi-label classification, most of the classifiers simply assume the predefined classes are independently distributed, which would definitely hinder the classification performance when there are intrinsic correlations between the classes. In this article, we propose a generative probabilistic model, the Correlated Labeling Model (CoL Model), to formulate the correlation between different classes. The CoL model is presented to capture the correlation between classes and the underlying structures via the latent random variables in a supervised manner. We develop a variational procedure to approximate the posterior distribution and employ the EM algorithm for the empirical Bayes parameter estimation. In our evaluations, the proposed model achieved promising results on various data sets.","PeriodicalId":252958,"journal":{"name":"2008 Eighth IEEE International Conference on Data Mining","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"45","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Eighth IEEE International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2008.86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 45

Abstract

Traditional discriminative classification method makes little attempt to reveal the probabilistic structure and the correlation within both input and output spaces. In the scenario of multi-label classification, most of the classifiers simply assume the predefined classes are independently distributed, which would definitely hinder the classification performance when there are intrinsic correlations between the classes. In this article, we propose a generative probabilistic model, the Correlated Labeling Model (CoL Model), to formulate the correlation between different classes. The CoL model is presented to capture the correlation between classes and the underlying structures via the latent random variables in a supervised manner. We develop a variational procedure to approximate the posterior distribution and employ the EM algorithm for the empirical Bayes parameter estimation. In our evaluations, the proposed model achieved promising results on various data sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多标签分类的生成概率模型
传统的判别分类方法很少尝试揭示输入和输出空间内的概率结构和相关性。在多标签分类场景中,大多数分类器简单地假设预定义的类是独立分布的,当类之间存在内在相关性时,这肯定会影响分类性能。在本文中,我们提出了一个生成概率模型,相关标记模型(CoL模型),以制定不同类别之间的相关性。提出了CoL模型,通过潜在随机变量以监督的方式捕获类与底层结构之间的相关性。我们开发了一个变分过程来近似后验分布,并使用EM算法进行经验贝叶斯参数估计。在我们的评估中,所提出的模型在各种数据集上取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SeqStream: Mining Closed Sequential Patterns over Stream Sliding Windows Support Vector Regression for Censored Data (SVRc): A Novel Tool for Survival Analysis A Probability Model for Projective Clustering on High Dimensional Data Text Cube: Computing IR Measures for Multidimensional Text Database Analysis A Hierarchical Algorithm for Clustering Uncertain Data via an Information-Theoretic Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1