Fundus image texture features analysis in diabetic retinopathy diagnosis

Devvi Sarwinda, A. Bustamam, A. M. Arymurthy
{"title":"Fundus image texture features analysis in diabetic retinopathy diagnosis","authors":"Devvi Sarwinda, A. Bustamam, A. M. Arymurthy","doi":"10.1109/ICSENST.2017.8304447","DOIUrl":null,"url":null,"abstract":"This paper investigates texture feature capabilities from fundus images to differentiate between diabetic retinopathy (DR), age-related macular degeneration (AMD) screening and normal. Our proposed method using improvement of local binary pattern (LBP) with calculation of LBP original value and magnitude value of fundus images. This method is compared with Local Line Binary Pattern (LLBP). In this study, four experiments (DR-Normal, DR-AMD, AMD-Normal, Multiclass) were designed for two databases, DIARETDB0 database and STARE. Kernel PCA is choosed as feature selection method, and three classifiers are tested (Naive Bayes, SVM, and KNN). The experimental results show that our proposed method has higher accuracy than LLBP, with accuracy of binary classification 100% for DR-Normal and AMD-Normal. While, multiclass classification (DR-AMD-Normal) achieves an accuracy 80–84%. These results suggest that our proposed method in this paper can be useful in a diagnosis aid system for diabetic retinopathy.","PeriodicalId":289209,"journal":{"name":"2017 Eleventh International Conference on Sensing Technology (ICST)","volume":"400 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Eleventh International Conference on Sensing Technology (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENST.2017.8304447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper investigates texture feature capabilities from fundus images to differentiate between diabetic retinopathy (DR), age-related macular degeneration (AMD) screening and normal. Our proposed method using improvement of local binary pattern (LBP) with calculation of LBP original value and magnitude value of fundus images. This method is compared with Local Line Binary Pattern (LLBP). In this study, four experiments (DR-Normal, DR-AMD, AMD-Normal, Multiclass) were designed for two databases, DIARETDB0 database and STARE. Kernel PCA is choosed as feature selection method, and three classifiers are tested (Naive Bayes, SVM, and KNN). The experimental results show that our proposed method has higher accuracy than LLBP, with accuracy of binary classification 100% for DR-Normal and AMD-Normal. While, multiclass classification (DR-AMD-Normal) achieves an accuracy 80–84%. These results suggest that our proposed method in this paper can be useful in a diagnosis aid system for diabetic retinopathy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
眼底图像纹理特征分析在糖尿病视网膜病变诊断中的应用
本文研究了眼底图像的纹理特征能力,以区分糖尿病视网膜病变(DR),年龄相关性黄斑变性(AMD)筛查和正常。我们提出了一种基于局部二值模式的改进方法,通过计算眼底图像的LBP原始值和大小值。该方法与局部线二值模式(LLBP)进行了比较。本研究针对DIARETDB0数据库和STARE数据库设计了4个实验(DR-Normal、DR-AMD、AMD-Normal、Multiclass)。选择核主成分分析作为特征选择方法,对朴素贝叶斯、支持向量机和KNN三种分类器进行了测试。实验结果表明,该方法具有比LLBP更高的准确率,DR-Normal和AMD-Normal的二元分类准确率达到100%。而多类分类(DR-AMD-Normal)准确率达到80-84%。这些结果表明,本文提出的方法可用于糖尿病视网膜病变的诊断辅助系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self adjustable daylight sensor for lighting systems Wheatstone bridge approach to the inspection of composite materials Demonstrator for online measurement of combustion gases NO, NO2 and SO2: A compact sensor system for highly resolved detection of hazardous emission gases Regeneratable surface acoustic wave (SAW) immunosensor for monitoring of physiological information Integration of an automatic agricultural and livestock production management system and an agriculture and food traceability system based on the Internet of Things technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1